16
Views
85
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Chromatin Opening and Transactivator Potentiation by RAP1 in Saccharomyces cerevisiae

&
Pages 5279-5288 | Received 18 May 1999, Accepted 20 May 1999, Published online: 28 Mar 2023

REFERENCES

  • Adams, C. C., and J. Workman 1995. Binding of disparate transcriptional activators to nucleosomal DNA is inherently cooperative. Mol. Cell. Biol. 15:1405–1421.
  • Allison, L. A., and J. Ingles 1989. Mutations in RNA polymerase II enhance or suppress mutations in GAL4. Proc. Natl. Acad. Sci. USA 86:2794–2798.
  • Arndt, K., and J. Fink 1986. GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5′ TGACTC 3′ sequences. Proc. Natl. Acad. Sci. USA 83:8516–8520.
  • Balasubramanian, B., and J. Morse 1999. Binding of Gal4p and Bicoid to nucleosomal sites in yeast in the absence of replication. Mol. Cell. Biol. 19:2977–2985.
  • Bortvin, A. Unpublished data.
  • Bunker, C. A., and J. Kingston 1996. Activation domain-mediated enhancement of activator binding to chromatin in mammalian cells. Proc. Natl. Acad. Sci. USA 93:10820–10825.
  • Burz, D. S., R. Rivera-Pomar, H. Jäckle, and J. Hanes 1998. Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the Drosophila embryo. EMBO J. 18:5998–6009.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and J. Kornberg 1990. A yeast protein that influences the chromatin structure of UASG and functions as a powerful auxiliary activator. Genes Dev. 4:503–514.
  • Christianson, T. W., R. S. Sikorski, M. Dante, J. H. Shero, and J. Hieter 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122.
  • Cohen, B., and R. Brent. Unpublished data.
  • Devlin, C., K. Tice-Baldwin, D. Shore, and J. Arndt 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11:3642–3651.
  • Drazinic, C. M., J. B. Smerage, M. C. Lopez, and J. Baker 1996. Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol. Cell. Biol. 16:3187–3196.
  • Driever, W., J. Ma, C. Nüsslein-Volhard, and J. Ptashne 1989. Rescue of bicoid mutant Drosophila embryos by Bicoid fusion proteins containing heterologous activating sequences. Nature 342:149–153.
  • Felsenfeld, G. 1992. Chromatin as an essential part of the transcriptional mechanism. Nature 355:219–224.
  • Fields, S., and J. Song 1989. A novel genetic system to detect protein-protein interactions. Nature 340:145–246.
  • Finley, R., and R. Brent. Unpublished data.
  • Georgakopoulos, T., and J. Thireos 1992. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152.
  • Gietz, R. D., and J. Sugino 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534.
  • Gilson, E., and J. Gasser 1995. Repressor activator protein 1 and its ligands: organising chromatin domains. Nucleic Acids Mol. Biol. 9:308–327.
  • Gonçalves, P. M., G. Griffioen, R. Minnee, M. Bosma, L. S. Kraakman, W. H. Mager, and J. Planta 1995. Transcription activation of yeast ribosomal genes requires additional elements apart from binding sites for Abf1p and Rap1p. Nucleic Acids Res. 23:1475–1480.
  • Gross, D. S., C. C. Adams, S. Lee, and J. Stentz 1993. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J. 12:3931–3945.
  • Higuchi, R., B. Krummel, and J. Saiki 1988. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 16:7351–7367.
  • Hill, J., K. A. Ian, G. Donald, and J. Griffiths 1991. DMSO-enhanced whole cell yeast transformation. Nucleic Acids Res. 19:5791.
  • Hope, I. A., and J. Struhl 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894.
  • Hu, Y.-F., Z. L. Hao, and J. Li 1999. Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. Genes Dev. 13:637–642.
  • Iyer, V., and J. Struhl 1995. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 14:2570–2579.
  • Jiang, W. Y., and J. Stillman 1995. Regulation of HIS4 expression by the Saccharomyces cerevisiae SIN4 transcriptional regulator. Genetics 140:103–114.
  • Kent, N. A., L. E. Bird, and J. Mellor 1993. Chromatin analysis in yeast using NP-40 permeabilized spheroplasts. Nucleic Acids Res. 21:4653–4654.
  • Kingston, R. E., C. A. Bunker, and J. Imbalzano 1996. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10:905–920.
  • Kirkpatrick, D. T., Q. Fan, and J. Petes 1999. Maximal stimulation of meiotic recombination by a yeast transcription factor requires the transcription activation domain and a DNA-binding domain. Genetics 152:101–115.
  • Louvion, J.-F., B. Havaux-Copf, and J. Picard 1993. Fusion of GAL4-VP16 to a steroid binding domain provides a tool for gratuitous induction of galactose-responsive genes in yeast. Gene 131:129–134.
  • Lu, Q., L. L. Wallrath, and J. Elgin 1995. The role of a positioned nucleosome at the Drosophila melanogaster hsp26 promoter. EMBO J. 14:4738–4746.
  • Ma, J., and J. Ptashne 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Martens, J. A., and J. Brandl 1994. GCN4p activation of the yeast TRP3 gene is enhanced by ABF1p and uses a suboptimal TATA element. J. Biol. Chem. 269:15661–15667.
  • Morse, R. H. 1993. Nucleosome disruption by transcription factor binding in yeast. Science 262:1563–1566.
  • Morse, R. H., S. Y. Roth, and J. Simpson 1992. A transcriptionally active tRNA gene interferes with nucleosome positioning in vivo. Mol. Cell. Biol. 12:4015–4025.
  • Müller, T., E. Gilson, R. Schmidt, R. Giraldo, J. Sogo, H. Gross, and J. Gasser 1994. Imaging the asymmetrical DNA bend induced by repressor activator protein 1 with scanning tunneling microscopy. J. Struct. Biol. 113:1–12.
  • Nedospasov, S. A., and J. Georgiev 1980. Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem. Biophys. Res. Commun. 92:532–539.
  • Ng, K. W., P. Ridgway, D. R. Cohen, and J. Tremethick 1997. The binding of a Fos/Jun heterodimer can completely disrupt the structure of a nucleosome. EMBO J. 16:2072–2085.
  • Owen-Hughes, T., and J. Workman 1994. Experimental analysis of chromatin function in transcriptional control. Crit. Rev. Eukaryot. Gene Expr. 4:403–441.
  • Paranjape, S. M., R. T. Kamakaka, and J. Kadonaga 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297.
  • Polach, K. J., and J. Widom 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254:130–149.
  • Polach, K. J., and J. Widom 1996. A model for the cooperative binding of eukaryotic regulatory proteins to nucleosomal target sites. J. Mol. Biol. 258:800–812.
  • Reece, R. J., and J. Ptashne 1993. Determinants of binding-site specificity among yeast C6 zinc cluster proteins. Science 261:909–911.
  • Rolfes, R. J., F. Zhang, and J. Hinnebusch 1997. The transcriptional activators BAS1, BAS2, and ABF1 bind positive regulatory sites as the critical elements for adenine regulation of ADE5,7. J. Biol. Chem. 272:13343–13354.
  • Ryan, M. P., R. Jones, and J. Morse 1998. SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol. Cell. Biol. 18:1774–1782.
  • Schroeder, S. C., and J. Weil 1998. Genetic tests of the role of Abf1p in driving transcription of the yeast TATA box binding protein-encoding gene, SPT15. J. Biol. Chem. 273:19884–19891.
  • Shimizu, M., S. Y. Roth, C. Szent-Gyorgyi, and J. Simpson 1991. Nucleosomes are positioned with base pair precision adjacent to the α2 operator in Saccharomyces cerevisiae. EMBO J. 10:3033–3041.
  • Shore, D. 1994. RAP1: a protean regulator in yeast. Trends Genet. 10:408–412.
  • Siddiqui, A. H., and J. Brandriss 1988. A regulatory region responsible for proline-specific induction of the yeast PUT2 gene is adjacent to its TATA box. Mol. Cell. Biol. 8:4634–4641.
  • Simpson, R. T. 1991. Nucleosome positioning: occurrence, mechanisms, and functional consequences. Prog. Nucleic Acids Res. Mol. Biol. 40:143–184.
  • Stafford, G. A., and J. Morse 1997. Chromatin remodeling by transcriptional activation domains in a yeast episome. J. Biol. Chem. 272:11526–11534.
  • Stafford, G. A., M. P. Ryan, and R. H. Morse. Unpublished data.
  • Struhl, K. 1992. Yeast GCN4 regulatory factor, p. 833–859. In S. A. McKnight, K. R. Yamamoto (ed.), Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Svaren, J., J. Schmitz, and J. Horz 1994. The transactivation domain of Pho4 is required for nucleosome disruption at the PHO5 promoter. EMBO J. 13:4856–4862.
  • Tanaka, M. 1996. Modulation of promoter occupancy by cooperative DNA binding and activation-domain function is a major determinant of transcriptional regulation by activators in vivo. Proc. Natl. Acad. Sci. USA 93:4311–4315.
  • Taylor, I. C. A., J. L. Workman, T. J. Schuetz, and J. Kingston 1991. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5:1285–1298.
  • Thoma, F. 1992. Nucleosome positioning. Biochim. Biophys. Acta 1130:1–19.
  • Tornow, J., X. Zeng, W. Gao, and J. Santangelo 1993. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. EMBO J. 12:2431–2437.
  • Vashee, S., and J. Kodadek 1995. The activation domain of GAL4 protein mediates cooperative promoter binding with general transcription factors in vivo. Proc. Natl. Acad. Sci. USA 92:10683–10687.
  • Vashee, S., K. Melcher, W. V. Ding, S. A. Johnston, and J. Kodadek 1998. Evidence for two modes of cooperative DNA binding in vivo that do not involve direct protein-protein interactions. Curr. Biol. 8:452–458.
  • Vashee, S., H. Xu, S. A. Johnston, and J. Kodadek 1993. How do “Zn2Cys6” proteins distinguish between similar upstream activation sites? J. Biol. Chem. 268:24699–24706.
  • Venter, U., J. Svaren, J. Schmitz, A. Schmid, and J. Hörz 1994. A nucleosome precludes binding of the transcription factor Pho4 in vivo to a critical target site in the PHO5 promoter. EMBO J. 13:4848–4855.
  • Vettese-Dadey, M., P. Walter, H. Chen, L. J. Juan, and J. Workman 1994. Role of the histone amino termini in facilitated binding of a transcription factor, GAL4-AH, to nucleosome cores. Mol. Cell. Biol. 14:970–981.
  • Vignais, M. L., J. Huet, J. M. Buhler, and J. Sentenac 1990. Contacts between the factor TUF and RPG sequences. J. Biol. Chem. 265:14669–14674.
  • Weiss, M. A., T. Ellenberger, C. R. Wobbe, J. P. Lee, S. C. Harrison, and J. Struhl 1990. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA. Nature 347:575–578.
  • Winston, F., C. Dollard, and J. Ricupero-Hovasse 1995. Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.
  • Workman, J. L., and J. Kingston 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–579.
  • Wu, C. 1980. The 5′ ends of Drosophila heat-shock genes in chromatin are sensitive to DNase I. Nature 286:854–860.
  • Xu, M., R. T. Simpson, and J. Kladde 1998. Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol. Cell. Biol. 18:1201–1212.
  • Yu, L. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.