82
Views
201
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Osmotic Stress-Induced Gene Expression in Saccharomyces cerevisiae Requires Msn1p and the Novel Nuclear Factor Hot1p

, , , , , & show all
Pages 5474-5485 | Received 03 Mar 1999, Accepted 28 Apr 1999, Published online: 28 Mar 2023

REFERENCES

  • Albertyn, J., S. Hohmann, J. M. Thevelein, and J. Prior 1994. GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 14:4135–4144.
  • Ansell, R., K. Granath, S. Hohmann, J. Thevelein, and J. Adler 1997. The two isoenzymes for yeast NAD-dependent glycerol 3-phosphate dehydrogenase, encoded by GPD1 and GPD2, have distinct roles in osmoadaption and redox regulation. EMBO J. 16:2179–2187.
  • Baker, H. 1991. GCR1 of Saccharomyces cerevisiae encodes a DNA binding protein whose binding is abolished by mutations in CTTCC sequence motif. Proc. Natl. Acad. Sci. USA 88:9443–9447.
  • Baker, H. 1986. Glycolytic gene expression in Saccharomyces cerevisiae: nucleotide sequence of GCR1, null mutants, and evidence for expression. Mol. Cell. Biol. 6:3774–3784.
  • Breeden, L., and J. Nasmyth 1985. Regulation of the yeast HO gene. Cold Spring Harbor Symp. Quant. Biol. 50:643–650.
  • Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and J. Gustin 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.
  • Chambers, A., E. A. Packham, and J. Graham 1995. Control of glycolytic gene expression in the budding yeast (Saccharomyces cerevisiae). Curr. Genet. 29:1–9.
  • Clifton, D., and J. Frankel 1981. The gcr (glycolysis regulation) mutation of Saccharomyces cerevisiae. J. Biol. Chem. 256:13074–13078.
  • Cyrcková, F., C. de Virgilio, E. Manser, J. R. Pringle, and J. Nasmyth 1995. Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast. Genes Dev. 9:1817–1830.
  • de Winde, J. H., M. Crauwels, S. Hohmann, J. M. Thevelein, and J. Winderickx 1996. Differential requirement of the yeast sugar kinases for sugar sensing in the establishment of the catabolite repressed state. Eur. J. Biochem. 241:633–643.
  • Drazinic, C. M., J. B. Smerage, M. C. Lopez, and J. Baker 1996. Activation mechanism of the multifunctional transcription factor repressor-activator protein 1 (Rap1p). Mol. Cell. Biol. 16:3187–3196.
  • Eide, D., and J. Guarente 1992. Increased dosage of a transcriptional activator gene enhances iron-limited growth of Saccharomyces cerevisiae. J. Gen. Microbiol. 138:347–354.
  • Eriksson, P., L. Adler, A. Blomberg 1997. Ph.D. thesis. Gothenburg University, Gothenburg, Sweden.
  • Estruch, F., and J. Carlson 1990. Increased dosage of the MSN1 gene restores invertase expression in yeast mutants defective in the SNF1 protein kinase. Nucleic Acids Res. 11:6959–6964.
  • Estruch, F., and J. Carlson 1993. Two homologous zinc finger genes identified by multicopy suppression in a SNF1 protein kinase mutant of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:3872–3881.
  • Ferrigno, P., F. Posas, D. Koepp, H. Saito, and J. Silver 1998. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J. 17:5606–5614.
  • Gaits, F., G. Degols, K. Shiozaki, and J. Russell 1998. Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev. 12:1464–1473.
  • Görner, W., E. Durchschlag, M. T. Martinez-Pastor, F. Estruch, G. Ammerer, B. Hamilton, H. Ruis, and J. Schüller 1998. Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12:586–597.
  • Gustin, M. C., J. Albertyn, M. Alexander, and J. Davenport 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:1264–1300.
  • Hirayama, T., T. Maeda, H. Saito, and J. Shinozaki 1995. Cloning and characterization of seven cDNAs for hyperosmolarity-responsive (HOR) genes of Saccharomyces cerevisiae. Mol. Gen. Genet. 249:127–138.
  • Hohmann, S. 1997. Shaping up: the response of yeast to osmotic stress, p. 101–145. In S. Hohmann, W. H. Mager (ed.), Yeast stress responses. R.G. Landes, Austin, Tex.
  • Huie, M. A., and J. Baker 1996. DNA-binding properties of the yeast transcriptional activator, Gcr1p. Yeast 12:307–317.
  • Huie, M. A., E. W. Scott, C. M. Drazinic, M. C. Lopez, I. K. Hornstra, T. P. Yang, and J. Baker 1992. Characterization of the DNA-binding activity of GCR1: in vivo evidence for two GCR1-binding sites in the upstream activating sequence of TPI of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2690–2700.
  • Jacoby, T., H. Flanagan, A. Faykin, A. G. Seto, C. Mattison, and J. Ota 1997. Two protein tyrosine phosphatases inactivate the osmotic stress response pathway in yeast by targeting the mitogen activated protein kinase, Hog1. J. Biol. Chem. 272:17749–17755.
  • James, P., J. Halladay, and J. Craig 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436.
  • Lambrechts, M. G., F. F. Bauer, J. Marmur, and J. Pretorius 1996. Muc1, a mucin-like protein that is regulated by Mss10, is critical for pseudohyphal differentiation in yeast. Proc. Natl. Acad. Sci. USA 93:8419–8424.
  • Lambrechts, M. G., P. Sollitti, J. Marmur, and J. Pretorius 1996. A multicopy suppressor gene, MSS10, restores STA2 expression in Saccharomyces cerevisiae strains containing the STA10 repressor gene. Curr. Genet. 29:523–529.
  • Lindquist, S., and J. Kim 1996. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA 93:5301–5306.
  • Luyten, K., J. Albertyn, W. F. Skibbe, B. A. Prior, J. Ramos, J. Thevelein, and J. Hohmann 1995. Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J. 14:1360–1371.
  • Maeda, T., M. Takekawa, and J. Saito 1995. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 269:554–558.
  • Maeda, T., S. M. Wurgler-Murphy, and J. Saito 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245.
  • Manivasakam, P., S. C. Weber, J. McElver, and J. Schiestl 1995. Micro-homology mediated PCR targeting in Saccharomyces cerevisiae. Nucleic Acids Res. 23:2799–2800.
  • Marchler, G., C. Schüller, G. Adam, and J. Ruis 1993. A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. EMBO J. 12:1997–2003.
  • Márquez, J. A., A. Pascual-Ahuir, M. Proft, and J. Serrano 1998. The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO J. 17:2543–2553.
  • Martinez-Pastor, M. T., G. Marchler, C. Schüller, A. Marchler-Bauer, H. Ruis, and J. Estruch 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J. 15:2227–2235.
  • Norbeck, J., A. K. Påhlman, N. Akhtar, A. Blomberg, and J. Adler 1996. Purification and characterization of two isoenzymes of dl-glycerol 3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing MAP kinase signal transduction pathway. J. Biol. Chem. 271:13875–13881.
  • Posas, F., and J. Saito 1998. Activation of the yeast SSK2 MAP kinase kinase kinase by the SSK1 two-component response regulator. EMBO J. 17:1385–1394.
  • Posas, F., and J. Saito 1997. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276:1702–1705.
  • Posas, F., M. Takekawa, and J. Saito 1998. Signal transduction by MAP kinase cascades in budding yeast. Curr. Opin. Microbiol. 1:175–182.
  • Posas, F., E. A. Witten, and J. Saito 1998. Requirement of STE50 for osmostress-induced activation of the STE11 mitogen-activated protein kinase kinase kinase in the high-osmolarity glycerol response pathway. Mol. Cell. Biol. 18:5788–5796.
  • Posas, F., S. M. Wurgler-Murphy, T. Maeda, E. A. Witten, T. C. Thai, and J. Saito 1996. Yeast HOG1 MAP kinase cascade is regulated by a multi-step phosphorelay mechanism in the SLN1-YPD1-SSK1 “two-component” osmosensor. Cell 86:865–875.
  • Proft, M., and J. Serrano 1999. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in Saccharomyces cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol. Cell. Biol. 19:537–546.
  • Reiser, V., H. Ruis, and J. Ammerer 1999. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 10:1147–1161.
  • Rep, M., J. Albertyn, J. M. Thevelein, B. A. Prior, and J. Hohmann 1999. Different signalling pathways contribute to the control of GPD1 expression by osmotic stress in Saccharomyces cerevisiae. Microbiology 145:715–727.
  • Rep, M., J. M. Thevelein, S. Hohmann 1999. The role of ATF-like transcription factors in yeast osmoadaptation. Unpublished results.
  • Rose, M. D., F. Winston, P. Hieter 1990. Methods in yeast genetics. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Schmitt, A. P., and J. McEntee 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5777–5782.
  • Schüller, G., J. L. Brewster, M. R. Alexander, M. C. Gustin, and J. Ruis 1994. The HOG pathway controls osmotic regulation of transcription via the stress response element (STRE) of the Saccharomyces cerevisiae CTT1 gene. EMBO J. 13:4382–4389.
  • Schüller, H. J., A. Hahn, F. Troster, A. Schutz, and J. Schweizer 1992. Coordinate genetic control of yeast fatty acid synthase genes FAS1 and FAS2 by an upstream activation site common to genes involved in membrane lipid biosynthesis. EMBO J. 11:107–114.
  • Siderius, M., E. Rots, and J. Mager 1997. High-osmolarity signalling in Saccharomyces cerevisiae is modulated in a carbon-source-dependent fashion. Microbiology 143:3241–3250.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Tamás, M. J., K. Luyten, F. C. W. Sutherland, A. Hernandez, J. Albertyn, H. Valadi, H. Li, B. A. Prior, S. G. Kilian, J. Ramos, L. Gustafsson, J. M. Thevelein, and J. Hohmann 1999. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31:1087–1104.
  • Thomas, B. J., and J. Rothstein 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630.
  • Toone, W. M., and J. Jones 1998. Stress-activated signalling pathways in yeast. Genes Cells 3:485–498.
  • Tornow, J., X. Zeng, W. Gao, and J. Santangelo 1993. GCR1, a transcriptional activator in Saccharomyces cerevisiae, complexes with RAP1 and can function without its DNA binding domain. EMBO J. 12:2431–2437.
  • Varela, J. C. S., U. M. Praekelt, P. A. Meacock, R. J. Planta, and J. Mager 1995. The Saccharomyces cerevisiae HSP12 gene is activated by the high-osmolarity glycerol pathway and negatively regulated by protein kinase A. Mol. Cell. Biol. 15:6232–6245.
  • Vojtek, A. B., S. M. Hollenberg, and J. Cooper 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.
  • Wach, A., A. Brachat, R. Pohlmann, and J. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Wurgler-Murphy, S. M., T. Maeda, E. A. Witten, and J. Saito 1997. Regulation of the Saccharomyces cerevisiae Hog1 mitogen-activated protein kinase by the Ptp2 and Ptp3 protein tyrosine phosphatases. Mol. Cell. Biol. 17:1289–1297.
  • Zachariae, W., and K. Nasmyth. Unpublished results.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.