14
Views
82
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The G2 Checkpoint Is Maintained by Redundant Pathways

, , , &
Pages 5872-5881 | Received 21 Jan 1999, Accepted 27 May 1999, Published online: 27 Mar 2023

REFERENCES

  • Agarwal, M. L., A. Agarwal, W. R. Taylor, and J. Stark 1995. p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc. Natl. Acad. Sci. USA 92:8493–8497.
  • Ausubel F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl 1994. Current protocols in molecular biology 2:21.1.1–21.1.5 John Wiley & Sons, Inc., New York, N.Y.
  • Azzam, E. I., S. M. de Toledo, M. J. Pykett, H. Nagasawa, and J. Little 1997. CDC2 is down-regulated by ionizing radiation in a p53-dependent manner. Cell Growth Differ. 8:1161–1169.
  • Barth, H., I. Hoffmann, S. Klein, M. Kaszkin, J. Richards, and J. Kinzel 1996. Role of cdc25-C phosphatase in the immediate G2 delay induced by the exogenous factors epidermal growth factor and phorbolester. J. Cell. Physiol. 168:589–599.
  • Brugarolas, J., C. Chandrasekaran, J. I. Gordon, D. Beach, T. Jacks, and J. Hannon 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557.
  • Bunz, F., A. Dutriaux, C. Lengauer, T. Waldman, S. Zhou, J. P. Brown, J. M. Sedivy, K. W. Kinzler, and J. Vogelstein 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501.
  • Cayrol, C., M. Knibiehler, and J. Ducommun 1998. p21 binding to PCNA causes G1 and G2 cell cycle arrest in p53-deficient cells. Oncogene 16:311–320.
  • Datta, R., R. Hass, H. Gunji, R. Weichselbaum, and J. Kufe 1992. Down-regulation of cell cycle control genes by ionizing radiation. Cell Growth Differ. 3:637–644.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and J. Leder 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.
  • de Toledo, S. M., E. I. Azzam, P. Keng, S. Laffrenier, and J. Little 1998. Regulation by ionizing radiation of CDC2, cyclin A, cyclin B, thymidine kinase, topoisomerase IIalpha, and RAD51 expression in normal human diploid fibroblasts is dependent on p53/p21 Waf1. Cell Growth Differ. 9:887–896.
  • Di Leonardo, A., S. P. Linke, K. Clarkin, and J. Wahl 1994. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 8:2540–2551.
  • Dulic, V., G. H. Stein, D. F. Far, and J. Reed 1998. Nuclear accumulation of p21Cip1 at the onset of mitosis: a role at the G2/M-phase transition. Mol. Cell. Biol. 18:546–557.
  • el-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and J. Vogelstein 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Enoch, T., and J. Norbury 1995. Cellular responses to DNA damage: cell-cycle checkpoints, apoptosis and the roles of p53 and ATM. Trends Biochem. Sci. 20:426–430 (Review.)
  • Evans, T., E. T. Rosenthal, J. Youngblom, D. Distel, and J. Hunt 1983. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33:389–396.
  • Ferrell, J. E. Jr., M. Wu, J. C. Gerhart, and J. Martin 1991. Cell cycle tyrosine phosphorylation of p34cdc2 and a microtubule-associated protein kinase homolog in Xenopus oocytes and eggs. Mol. Cell. Biol. 11:1965–1971.
  • Foster, S. A., G. W. Demers, B. G. Etscheid, and J. Galloway 1994. The ability of human papillomavirus E6 proteins to target p53 for degradation in vivo correlates with their ability to abrogate actinomycin D-induced growth arrest. J. Virol. 68:5698–5705.
  • Furnari, B., N. Rhind, and J. Russell 1997. CDC25 mitotic inducer targeted by CHK1 DNA damage checkpoint kinase. Science 277:1495–1497.
  • Gould, K. L., and J. Nurse 1989. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342:39–45.
  • Greenblatt, M. S., W. P. Bennett, M. Hollstein, and J. Harris 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855–4878 (Review.)
  • Halbert, C. L., G. W. Demers, and J. Galloway 1991. The E7 gene of human papillomavirus type 16 is sufficient for immortalization of human epithelial cells. J. Virol. 65:473–478.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and J. Elledge 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.
  • Hawkins, D. S., G. W. Demers, and J. Galloway 1996. Inactivation of p53 enhances sensitivity to multiple chemotherapeutic agents. Cancer Res. 56:892–898.
  • Hermeking, H., C. Lengauer, K. Polyak, T. He, L. Zhang, S. Thiagalingam, K. Kinzler, and J. Vogelstein 1998. 14-3-3 is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1:3–11.
  • Hollstein, M., D. Sidransky, B. Vogelstein, and J. Harris 1991. p53 mutations in human cancers. Science 253:49–53 (Review.)
  • Innocente, S. A., J. L. Abrahamson, J. P. Cogswell, and J. Lee 1999. p53 regulates a G2 checkpoint through cyclin B1. Proc. Natl. Acad. Sci. USA 96:2147–2152.
  • Jin, P., Y. Gu, and J. Morgan 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134:963–970.
  • Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein, and J. Craig 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311.
  • Kaufmann, W. K., J. L. Schwartz, J. C. Hurt, L. L. Byrd, D. A. Galloway, E. Levedakou, and J. Paules 1997. Inactivation of G(2) checkpoint function and chromosomal destabilization are linked in human fibroblasts expressing human papillomavirus type 16 E6. Cell Growth Differ. 8:1105–1114.
  • Kiyono, T., A. Hiraiwa, M. Fujita, Y. Hayashi, T. Akiyama, and J. Ishibashi 1997. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc. Natl. Acad. Sci. USA 94:11612–11616.
  • Kiyono, T., A. Hiraiwa, S. Ishii, T. Takahashi, and J. Ishibashi 1994. Inhibition of p53-mediated transactivation by E6 of type 1, but not type 5, 8, or 47, human papillomavirus of cutaneous origin. J. Virol. 68:4656–4661.
  • Kley, N., R. Y. Chung, S. Fay, J. P. Loeffler, and J. Seizinger 1992. Repression of the basal c-fos promoter by wild-type p53. Nucleic Acids Res. 20:4083–4087.
  • Lane, D. P. 1992. Cancer. p53, guardian of the genome. Nature 358:15–16 (News; comment.)
  • Lee, T. H., M. J. Solomon, M. C. Mumby, and J. Kirschner 1991. INH, a negative regulator of MPF, is a form of protein phosphatase 2A. Cell 64:415–423.
  • Leffers, H., P. Madsen, H. H. Rasmussen, B. Honore, A. H. Andersen, E. Walbum, J. Vandekerckhove, and J. Celis 1993. Molecular cloning and expression of the transformation sensitive epithelial marker stratifin. A member of a protein family that has been involved in the protein kinase C signalling pathway. J. Mol. Biol. 231:982–998.
  • Linke, S. P., K. C. Clarkin, and J. Wahl 1997. p53 mediates permanent arrest over multiple cell cycles in response to gamma-irradiation. Cancer Res. 57:1171–1179.
  • Liu, F., J. J. Stanton, Z. Wu, and J. Piwnica-Worms 1997. The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol. Cell. Biol. 17:571–583.
  • Lu, K. P., and J. Hunter 1995. Evidence for a NIMA-like mitotic pathway in vertebrate cells. Cell 81:413–424.
  • Maity, A., W. G. McKenna, and J. Muschel 1995. Evidence for post-transcriptional regulation of cyclin B1 mRNA in the cell cycle and following irradiation in HeLa cells. EMBO J. 14:603–609.
  • McGowan, C. H., and J. Russell 1993. Human Wee1 kinase inhibits cell division by phosphorylating p34cdc2 exclusively on Tyr15. EMBO J. 12:75–85.
  • Michalovitz, D., O. Halevy, and J. Oren 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–680.
  • Muschel, R. J., H. B. Zhang, G. Iliakis, and J. McKenna 1991. Cyclin B expression in HeLa cells during the G2 block induced by ionizing radiation. Cancer Res. 51:5113–5117.
  • Muschel, R. J., H. B. Zhang, and J. McKenna 1993. Differential effect of ionizing radiation on the expression of cyclin A and cyclin B in HeLa cells. Cancer Res. 53:1128–1135.
  • O’Connor, P. M. 1997. Mammalian G1 and G2 phase checkpoints. Cancer Surv. 29:151–182 (Review.)
  • O’Connor, P. M., D. K. Ferris, I. Hoffmann, J. Jackman, G. Draetta, and J. Kohn 1994. Role of the cdc25C phosphatase in G2 arrest induced by nitrogen mustard. Proc. Natl. Acad. Sci. USA 91:9480–9484.
  • O’Connor, P. M., D. K. Ferris, G. A. White, J. Pines, T. Hunter, D. L. Longo, and J. Kohn 1992. Relationships between cdc2 kinase, DNA cross-linking, and cell cycle perturbations induced by nitrogen mustard. Cell Growth Differ. 3:43–52.
  • Osmani, A. H., S. L. McGuire, and J. Osmani 1991. Parallel activation of the NIMA and p34cdc2 cell cycle-regulated protein kinases is required to initiate mitosis in A. nidulans. Cell 67:283–291.
  • Parker, L. L., and J. Piwnica-Worms 1992. Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science 257:1955–1957.
  • Peng, C. Y., P. R. Graves, R. S. Thoma, Z. Q. Wu, A. S. Shaw, and J. Piwnica-Worms 1997. Mitotic and G(2) checkpoint control—regulation of 14-3-3 protein binding by phosphorylation of CDC25C on serine-216. Science 277:1501–1505.
  • Prasad, G. L., E. M. Valverius, E. McDuffie, and J. Cooper 1992. Complementary DNA cloning of a novel epithelial cell marker protein, HME1, that may be down-regulated in neoplastic mammary cells. Cell Growth Differ. 3:507–513.
  • Rhind, N., B. Furnari, and J. Russell 1997. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11:504–511.
  • Sanchez, Y., C. Wong, R. S. Thoma, R. Richman, R. Q. Wu, H. Piwnica-Worms, and J. Elledge 1997. Conseration of the CHK1 checkpoint pathway in mammals—linkage of DNA damage to CDK regulation through CDC25. Science 277:1497–1501.
  • Sandell, L. L., and J. Zakian 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739.
  • Schultz, S. J., A. M. Fry, C. Sutterlin, T. Ried, and J. Nigg 1994. Cell cycle-dependent expression of Nek2, a novel human protein kinase related to the NIMA mitotic regulator of Aspergillus nidulans. Cell Growth Differ. 5:625–635.
  • Smythe, C., and J. Newport 1992. Coupling of mitosis to the completion of S phase in Xenopus occurs via modulation of the tyrosine kinase that phosphorylates p34cdc2. Cell 68:787–797.
  • Stein, G. H., L. F. Drullinger, R. S. Robetorye, O. M. Pereira-Smith, and J. Smith 1991. Senescent cells fail to express cdc2, cycA, and cycB in response to mitogen stimulation. Proc. Natl. Acad. Sci. USA 88:11012–11016.
  • Stewart, N., G. G. Hicks, F. Paraskevas, and J. Mowat 1995. Evidence for a second cell cycle block at G2/M by p53. Oncogene 10:109–115.
  • Sugrue, M. M., D. Y. Shin, S. W. Lee, and J. Aaronson 1997. Wild-type p53 triggers a rapid senescence program in human tumor cells lacking functional p53. Proc. Natl. Acad. Sci. USA 94:9648–9653.
  • Vikhanskaya, F., E. Erba, M. D’Incalci, and J. Broggini 1994. Introduction of wild-type p53 in a human ovarian cancer cell line not expressing endogenous p53. Nucleic Acids Res. 22:1012–1017.
  • Walworth, N., S. Davey, and J. Beach 1993. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363:368–371.
  • Weinert, T. 1997. A DNA damage checkpoint meets the cell cycle engine. Science 277:1450–1451 (Comment.)
  • Xiong, Y., G. J. Hannon, H. Zhang, D. Casso, R. Kobayashi, and J. Beach 1993. p21 is a universal inhibitor of cyclin kinases. Nature 366:701–704.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.