7
Views
143
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Suppression of Ras-Induced Apoptosis by the Rac GTPase

&
Pages 5892-5901 | Received 03 Mar 1999, Accepted 19 May 1999, Published online: 27 Mar 2023

REFERENCES

  • Baichwal, V. R., and J. Baeuerle 1997. Apoptosis: activate NF-κB or die? Curr. Biol. 7:R94–R96.
  • Baldwin, A. S. 1996. The NF-kappaB and I kappaB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Campbell, S. L., R. Khosravi-Far, K. L. Rossman, G. J. Clark, and J. Der 1998. Increasing complexity of Ras signaling. Oncogene 17:1395–1413.
  • Chen, C. Y., and J. Faller 1995. Direction of p21ras-generated signals towards cell growth or apoptosis is determined by protein kinase C and Bcl-2. Oncogene 11:1487–1498.
  • Derijard, M., Hibi, I. Wu, T. Barrett, B. Su, T. Deng, M. Karin, and J. Davis 1994. JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-jun activation domain. Cell 76:1025–1037.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and J. Karin 1997. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388:548–554.
  • Dikic, I., J. Schlessinger, and J. Lax 1994. PC12 cells overexpressing the insulin receptor undergo insulin-dependent neuronal differentiation. Curr. Biol. 4:702–708.
  • Downward, J. 1998. Ras signaling and apoptosis. Curr. Opin. Genet. Dev. 8:49–54.
  • Foltz, I. N., R. E. Gerl, J. S. Wieler, M. Luckach, R. A. Salmon, and J. Schrader 1998. Human mitogen-activated protein kinase kinase 7 (MKK7) is a highly conserved c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) activated by environmental stresses and physiological stimuli. J. Biol. Chem. 273:9344–9351.
  • Franke, T. F., D. R. Kaplan, and J. Cantley 1997. PI3K: Downstream AKTion blocks apoptosis. Cell 88:435–437.
  • Freeman, J., A. Abo, and J. Lambeth 1996. Rac “insert region” is a novel effector region that is implicated in the activation of NADPH oxidase, but not PAK65. J. Biol. Chem. 271:19794–19801.
  • Fukasawa, K., S. Rulong, J. Resau, P. Pinto da Silva, and J. Van de Woude 1995. Overexpression of Mos oncogene product in Swiss 3T3 cells induces apoptosis preferentially during S-phase. Oncogene 10:1–8.
  • Fukasawa, K., and J. Van de Woude 1997. Synergy between the Mos/mitogen-activated protein kinase pathway and loss of p53 function in transformation and chromosome instability. Mol. Cell. Biol. 17:506–518.
  • Groom, L. A., A. A. Sneddon, D. R. Alessi, S. Dowd, and J. Keyse 1996. Differential regulation of the MAP, SAP and RK/p38 kinases by Pyst1, a novel cytosolic dual-specificity phosphatase. EMBO J. 15:3621–3632.
  • Hagag, N., S. Halegoua, and J. Viola 1986. Inhibition of growth factor induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature 319:680–682.
  • Hirsch, D. D., and J. Stork 1997. Mitogen-activated protein kinase phosphatases inactivate stress-activated protein kinase pathways in vivo. J. Biol. Chem. 272:4568–4575.
  • Joneson, T., M. McDonough, D. Bar-Sagi, and J. Van Aelst 1996. Rac regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 274:1374–1376.
  • Joneson, T., M. White, M. Wigler, and J. Bar-Sagi 1996. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271:810–812.
  • Joneson, T., and J. Bar-Sagi 1997. Ras effectors and their role in mitogenesis and oncogenesis. J. Mol. Med. 75:587–593.
  • Joneson, T., and J. Bar-Sagi 1998. A Rac1 effector site controlling mitogenesis through superoxide production. J. Biol. Chem. 273:17991–17994.
  • Karim, F. D., and J. Rubin 1998. Ectopic expression of activated Ras1 induces hyperplastic growth and increased cell death in Drosophila imaginal tissues. Development 125:1–9.
  • Kauffmann-Zeh, A., P. Rodriguez-Viciana, E. Ulrich, C. Gilbert, P. Coffer, J. Downward, and J. Evan 1997. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385:544–548.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. V. Aelst, M. H. Wigler, and J. Der 1996. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16:3923–3933.
  • Khosrovi-Far, R., P. Solkki, G. Clark, M. Kinch, and J. Der 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453.
  • Kurada, P., and J. White 1998. Ras promotes cell survival in Drosophila by downregulating hid expression. Cell 95:319–329.
  • Kyriakis, J. M., P. Banerjee, E. Nikolakaki, T. Dai, E. A. Rubie, M. F. Ahmad, J. Avruch, and J. Woodgett 1994. The stress-activated protein kinase subfamily of c-Jun kinases. Nature 369:156–160.
  • Lamarche, N., N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenstrom, T. Bridges, J. Chant, and J. Hall 1996. Rac and Cdc42 induce actin polymerization and G1 cell progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87:519–529.
  • Mackay, D. J. G., and J. Hall 1998. Rho GTPases. J. Biol. Chem. 273:20685–20688.
  • Mayo, M., C.-Y. Wang, P. Cogswell, K. Rogers-Graham, S. Lowe, C. Der, and J. Baldwin 1997. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278:1812–1815.
  • Marte, B. M., and J. Downward 1997. PKB/Akt: connecting PI3-kinase to cell survival and beyond. Trends Biochem. Sci. 22:355–358.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and J. Rao 1997. IKK-1 and IKK-2: cytokine-activated IkappaB kinases essential for NG-kappaB activation. Science 278:860–866.
  • Meyer, M., R. Schreck, and J. Baeuerle 1993. H2O2 and antioxidants have opposite effects on activation of NF-kappaB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO 12:2005–2015.
  • Muda, M., A. Theodosiou, N. Rodrigues, U. Boschert, M. Camps, C. Gillieron, K. Davies, A. Ashworth, and J. Arkinstall 1996. The dual specificity phosphatases M3/6 and MKP-3 are highly selective for inactivation of distinct mitogen-activated protein kinases. J. Biol. Chem. 271:27205–27208.
  • Mulchay, L. S., M. R. Smith, and J. Stacey 1985. Requirement for ras protooncogene function during serum stimulated growth of NIH 3T3 cells. Nature 313:241–243.
  • Perona, R., S. Montaner, L. Saniger, I. Sanchez-Perez, R. Bravo, and J. Local 1997. Activation of the nuclear factor-κB by Rho, CDC42 and Rac-1 proteins. Genes Dev. 11:463–475.
  • Qui, R., F. McCormick, and J. Symons 1995. The GTPase Rac1 controls cell proliferation and cooperates with the MAP kinase pathway in fibroblast transformation. Nature 374:457–459.
  • Qui, R.-G., J. Chen, F. McCormick, and J. Symons 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785.
  • Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and J. Rothe 1997. Identification and characterization of an I kappaB kinase. Cell 90:373–383.
  • Ridley, A. J., H. F. Paterson, C. Johnston, D. Diekmann, and J. Hall 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.
  • Rodriguez-viciana, P., P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward 1997. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467.
  • Schenk, H., M. Klein, W. Erdbrugger, W. Droge, and J. Schulze-Osthoff 1994. Distinct effects of thioredoxin and other antioxidants on the activation of NF-κB and AP-1. Proc. Natl. Acad. Sci. USA 91:1672–1676.
  • Schreck, R., and J. Baeuerle 1994. Assessing oxegen radicals as mediators in activation of inducible eukaryotic transcription factor NF-κB. Methods Enzymol. 234:151–163.
  • Serrano, M., A. W. Lin, M. E. McCurrach, D. Beach, and J. Lowe 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16ink4a. Cell 88:593–602.
  • Sulciner, D. J., K. Irani, Z.-X. Yu, V. J. Ferrans, P. Goldschmidt-Clermont, and J. Finkel 1996. Rac1 regulates a cytokine-stimulated, redox-dependent pathway necessary for NF-κB activation. Mol. Cell. Biol. 16:7115–7121.
  • Tapon, N., K. Nagata, N. Lamarche, and J. Hall 1998. A new rac target POSH is an SH3-containing scaffold protein involved in the JNK and NF-kappaB signaling pathways. EMBO J. 17:1395–1404.
  • Thanos, D., and J. Maniatis 1995. NF-kappaB: a lesson in family values. Cell 80:529–532.
  • Traverse, S., K. Seedorf, H. Paterson, C. J. Marshall, P. Cohen, and J. Ulrich 1994. EGF triggers neural differentiation of PC12 cells that overexpress the EGF receptor. Curr. Biol. 4:694–701.
  • Van Weering, D. H. J., J. de Rooij, B. Marte, J. Downward, J. L. Box, and J. Burgering 1998. Protein kinase B activation and lamellipodium formation are independent phosphoinositide 3-kinase-mediated events differentially regulated by endogenous Ras. Mol. Cell. Biol. 18:1802–1811.
  • Weinberg, R. A. 1997. The cat and mouse games that genes, viruses, and cells play. Cell 88:573–575.
  • Welch, H., A. Eguinoa, L. R. Stephens, and J. Hawkins 1998. Protein kinase B and Rac are activated in parallel within a phosphatidylinositide 3OH-kinase-controlled signaling pathway. J. Biol. Chem. 273:11248–11256.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. Van Aelst, M. Karin, and J. Wigler 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80:533–541.
  • Willumsen, B., A. Christensen, N. Hubbert, A. Papageorge, and J. Lowy 1984. The p21 ras C-terminus is required for transformation and membrane association. Nature 310:583–586.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and J. Goeddel 1997. IkappaB kinase-beta: NF-kappaB activation and complex formation with IkappaB kinase-alpha and NIK. Science 278:866–869.
  • Xia, Z., M. Dickens, J. Raingeaud, R. J. Davis, and J. Greenberg 1995. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.