30
Views
46
CrossRef citations to date
0
Altmetric
Gene Expression

Active-Site Mutations in the Xrn1p Exoribonuclease of Saccharomyces cerevisiae Reveal a Specific Role in Meiosis

, &
Pages 5930-5942 | Received 05 Apr 1999, Accepted 14 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., R. Padmore, and J. Kleckner 1990. Analysis of wild-type and rad50 mutants of yeast suggest an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436.
  • Amberg, D. C., A. L. Goldstein, and J. Cole 1992. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6:1173–1189.
  • Bähler, J., G. Hagens, G. Holzinger, H. Scherthan, and J. Heyer 1994. Saccharomyces cerevisiae cells lacking the homologous pairing protein p175(SEP1) arrest at pachytene during meiotic prophase. Chromosoma 103:129–141.
  • Bang, D. D., V. Timmermans, R. Verhage, A. M. Zeeman, P. Vandeputte, and J. Brouwer 1995. Regulation of the Saccharomyces cerevisiae DNA repair gene RAD16. Nucleic Acids Res. 23:1679–1685.
  • BascomSlack, C. A., and J. Dawson 1997. The yeast motor protein, Kar3p, is essential for meiosis I. J. Cell Biol. 139:459–467.
  • Bashkirov, V. I., H. Scherthan, J. A. Solinger, J. M. Buerstedde, and J. Heyer 1997. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J. Cell Biol. 136:761–773.
  • Bashkirov, V. I., J. A. Solinger, and J. Heyer 1995. Identification of functional domains in the Sep1 protein (=Kem1, Xrn1), which is required for transition through meiotic prophase in Saccharomyces cerevisiae. Chromosoma 104:215–222.
  • Beck, P. J., S. Gonzalez, C. L. Ward, and J. Molineux 1989. Sequence of bacteriophage T3 DNA from gene 2.5 through gene 9. J. Mol. Biol. 210:687–701.
  • Bellocq, C., I. Andreytornare, A. M. P. Doret, B. Maeder, L. Paturle, D. Job, J. Haiech, and J. Edelstein 1992. Purification of assembly-competent tubulin from Saccharomyces cerevisiae. Eur. J. Biochem. 210:343–349.
  • Bishop, D. K., D. Park, L. Xu, and J. Kleckner 1992. DMC1: A meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456.
  • Borodovsky, M., K. E. Rudd, and J. Koonin 1994. Intrinsic and extrinsic approaches for detecting genes in a bacterial genome. Nucleic Acids Res. 22:4756–4767.
  • Caponigro, G., and J. Parker 1996. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol. Rev. 60:233.
  • Carr, A. M., K. S. Sheldrick, J. M. Murray, R. al-Harithy, F. Z. Watts, and J. Lehmann 1993. Evolutionary conservation of excision repair in Schizosaccharomyces pombe: evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene. Nucleic Acids Res. 21:1345–1349.
  • Ceska, T. A., J. R. Sayers, G. Stier, and J. Suck 1996. A helical arch allowing single-stranded DNA to thread through T5 5′-exonuclease. Nature 382:90–93.
  • Chen, J. H., R. Kanaar, and J. Cozzarelli 1994. The Sep1 strand exchange protein from Saccharomyces cerevisiae promotes a paranemic joint between homologous DNA molecules. Genes Dev. 8:1356–1366.
  • Chikashige, Y., D. Q. Ding, H. Funabiki, T. Haraguchi, S. Mashiko, M. Yanagida, and J. Hiraoka 1994. Telomere-led premeiotic chromosome movement in fission yeast. Science 264:270–273.
  • Decker, C. J., and J. Parker 1993. A turnover pathway for both stable and unstable messenger RNAs in yeast—evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643.
  • Dykstra, C. C., R. K. Hamatake, and J. Sugino 1990. DNA strand transferase protein β from yeast mitotic cells differs from strand transfer protein α from meiotic cells. J. Biol. Chem. 265:10968–10973.
  • Dykstra, C. C., K. Kitata, A. B. Clarke, R. K. Hamatake, and J. Sugino 1991. Cloning and characterization of DST2, the gene for DNA strand transfer protein β from Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2583–2592.
  • Fleischmann, R. D. et al.. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512.
  • Fsihi, H., and J. Cole 1995. The Mycobacterium leprae genome: systematic sequence analysis identifies key catabolic enzymes, ATP-dependent transport systems and a novel polA locus associated with genomic variability. Mol. Microbiol. 16:909–919.
  • Gutman, P. D., and J. Minton 1993. Conserved sites in the 5′-3′ exonuclease domain of Escherichia coli DNA polymerase. Nucleic Acids Res. 21:4406–4407.
  • Harrington, J. J., and J. Lieber 1994. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13:1235–1246.
  • Harrington, J. J., and J. Lieber 1994. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev. 8:1344–1355.
  • Henry, Y., H. Wood, J. P. Morrissey, E. Petfalski, S. Kearsey, and J. Tollervey 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13:2452–2463.
  • Heyer, W. D. 1994. The search for the right partner—homologous pairing and DNA strand exchange proteins in eukaryotes. Experientia 50:223–233.
  • Heyer, W. D., D. H. Evans, and J. Kolodner 1988. Renaturation of DNA by a Saccharomyces cerevisiae protein that catalyzes homologous pairing and strand exchange. J. Biol. Chem. 263:15189–15195.
  • Heyer, W. D., A. W. Johnson, U. Reinhart, and J. Kolodner 1995. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol. Cell. Biol. 15:2728–2736.
  • Holler, A., V. I. Bashkirov, J. A. Solinger, U. Reinhart, and J. Heyer 1995. Use of monoclonal antibodies in the functional characterization of the Saccharomyces cerevisiae Sep1 protein. Eur. J. Biochem. 231:329–336.
  • Hollingsworth, H. C., and J. Nossal 1991. Bacteriophage T4 encodes an RNaseH which removes RNA primers made by the T4 DNA replication system in vitro. J. Biol. Chem. 266:1888–1897.
  • Hsu, C. L., and J. Stevens 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain messenger RNA species that are Poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13:4826–4835.
  • Interthal, H., C. Bellocq, J. Bähler, V. I. Bashkirov, S. Edelstein, and J. Heyer 1995. A role of Sep1 (=Kem1, Xrn1) as a microtubule-associated protein in Saccharomyces cerevisiae. EMBO J. 14:1057–1066.
  • Johnson, A. W. 1997. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 17:6122–6130.
  • Johnson, A. W., and J. Kolodner 1991. Strand exchange protein 1 from Saccharomyces cerevisiae. A novel multifunctional protein that contains DNA strand exchange and exonuclease activities. J. Biol. Chem. 266:14046–14054.
  • Johnson, A. W., and J. Kolodner 1995. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol. 15:2719–2727.
  • Kane, S. M., and J. Roth 1974. Carbohydrate metabolism during ascospore development in yeast. J. Bacteriol. 118:8–14.
  • Käslin, E., and J. Heyer 1994. A multifunctional exonuclease from vegetative Schizosaccharomyces pombe cells exhibiting in vitro strand exchange activity. J. Biol. Chem. 269:14094–14102.
  • Käslin, E., and J. Heyer 1994. Schizosaccharomyces pombe fatty acid synthetase mediates DNA strand exchange in vitro. J. Biol. Chem. 269:14103–14110.
  • Kim, J., P. O. Ljungdahl, and J. Fink 1990. kem mutations affect nuclear fusion in Saccharomyces cerevisiae. Genetics 126:799–812.
  • Kim, Y., S. H. Eom, J. Wang, D. S. Lee, S. W. Suh, and J. Steitz 1995. Crystal structure of Thermus aquaticus DNA polymerase. Nature 376:612–616.
  • Kipling, D., C. Tambini, and J. Kearsey 1991. rar mutations which increase artificial chromosome stability in Saccharomyces cerevisiae identify transcription and recombination proteins. Nucleic Acids Res. 19:1385–1391.
  • Kohli, J. 1994. Meiosis—telomeres lead chromosome movement. Curr. Biol. 4:724–727.
  • Kolodner, R., D. H. Evans, and J. Morrison 1987. Purification and characterization of an activity from Saccharomyces cerevisiae that catalyzes homologous pairing and strand exchange. Proc. Natl. Acad. Sci. USA 84:5560–5564.
  • Kolodner, R., S. D. Hall, and J. Luisideluca 1994. Homologous pairing proteins encoded by the Escherichia coli recE and recT genes. Mol. Microbiol. 11:23–30.
  • Kunkel, T. A., J. D. Roberts, and J. Zakour 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Larimer, W. F., and J. Stevens 1990. Disruption of the gene XRN1, coding for a 5′-3′ exoribonuclease, restricts yeast cell growth. Gene 95:85–90.
  • Liu, Z. P., and J. Gilbert 1994. The yeast KEM1 gene encodes a nuclease specific for G4 tetraplex DNA: implication of in vivo functions for this novel DNA structure. Cell 77:1083–1092.
  • Liu, Z. P., A. Lee, and J. Gilbert 1995. Gene disruption of a G4-DNA-dependent nuclease in yeast leads to cellular senescence and telomere shortening. Proc. Natl. Acad. Sci. USA 92:6002–6006.
  • Loidl, J. 1994. Cytological aspects of meiotic recombination. Experientia 50:285–294.
  • Loidl, J. 1990. The initiation of meiotic chromosome pairing: the cytological view. Genome 33:759–778.
  • Longhese, M. P., P. Plevani, and J. Lucchini 1994. Replication factor A is required in vivo for DNA replication, repair, and recombination. Mol. Cell. Biol. 14:7884–7890.
  • Lopez, P., S. Martinez, A. Diaz, M. Espinosa, and J. Lacks 1989. Characterization of the polA gene of Streptococcus pneumoniae and comparison of the DNA polymerase I it encodes to homologous enzymes from Escherichia coli and phage T7. J. Biol. Chem. 264:4255–4263.
  • Marini, F., A. Pellicioli, V. Paciotti, G. Lucchini, P. Plevani, D. F. Stern, and J. Foiani 1997. A role for DNA primase in coupling DNA replication to DNA damage response. EMBO J. 16:639–650.
  • McEwen, B., and J. Edelstein 1980. Evidence for a mixed lattice in microtubules in vitro. J. Mol. Biol. 139:123–145.
  • Meluh, P. B., and J. Rose 1990. KAR3, a kinesin-related gene required for nuclear fusion. Cell 60:1029–1041.
  • Mizrahi, V., and J. Huberts 1996. Deoxy- and dideoxynucleotide discrimination and identification of critical 5′ nuclease domain residues of the DNA polymerase I from Mycobacterium tuberculosis. Nucleic Acids Res. 24:4845–4852.
  • Mueser, T. C., N. G. Nossal, and J. Hyde 1996. Structure of bacteriophage T4 RNase H, a 5′ to 3′ RNA-DNA and DNA-DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell 85:1101–1112.
  • Muhlrad, D., C. J. Decker, and J. Parker 1994. Deadenylation of the unstable mRNA encoded by the yeast Mfa2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8:855–866.
  • Muhlrad, D., C. J. Decker, and J. Parker 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15:2145–2156.
  • Obar, R. A., C. A. Collins, J. A. Hammarback, H. S. Shpetner, and J. Vallee 1990. Molecular cloning of the microtubule-associated mechanochemical enzyme dynamin reveals homology with a new family of GTP-binding proteins. Nature 347:256–261.
  • Odonovan, A., D. Scherly, S. G. Clarkson, and J. Wood 1994. Isolation of active recombinant XPG protein, a human DNA repair endonuclease. J. Biol. Chem. 269:15965–15968.
  • Padmore, R., L. Cao, and J. Kleckner 1991. Temporal comparison of recombination and synaptonemal complex formation during meiosis in S. cerevisiae. Cell 66:1239–1256.
  • Page, A. M., K. Davis, C. Molineux, R. D. Kolodner, and J. Johnson 1998. Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 26:3707–3716.
  • Page, B. D., L. L. Satterwhite, M. D. Rose, and J. Snyder 1994. Localization of the Kar3 kinesin heavy chain-related protein requires the Cik1 interacting protein. J. Cell Biol. 124:507–519.
  • Polaina, J., and J. Conde 1982. Genes involved in the control of nuclear fusion during the sexual cycle of Saccharomyces cerevisiae. Mol. Gen. Genet. 186:253–258.
  • Robins, P., D. J. C. Pappin, R. D. Wood, and J. Lindahl 1994. Structural and functional homology between mammalian DNase IV and the 5′-nuclease domain of Escherichia coli DNA polymerase I. J. Biol. Chem. 269:28535–28538.
  • Rose, M. D. 1996. Nuclear fusion in the yeast Saccharomyces cerevisiae. Annu. Rev. Cell Dev. Biol. 12:663–695.
  • Ross, J. 1995. mRNA stability in mammalian cells. Microbiol. Rev. 59:423–450.
  • Santocanale, C., H. Neecke, M. P. Longhese, G. Lucchini, and J. Plevani 1995. Mutations in the gene encoding the 34 kDa subunit of yeast replication protein A cause defective S phase progression. J. Mol. Biol. 254:595–607.
  • Sayers, J. R. 1994. Computer aided identification of a potential 5′-3′ exonuclease gene encoded by Escherichia coli. J. Theor. Biol. 170:415–421.
  • Shelanski, M. L., F. Gaskin, and J. Cantor 1973. Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA 70:765–768.
  • Sheldon, J., C. Willson, H. G. Dickinson 1988. Interaction between the nucleus and cytoskeleton during pairing stages of male meiosis in flowering plants, p. 27–35. In O. E. Brandham (ed.), Kew Chromosome Conference III. HMSO, London, United Kingdom.
  • Shen, B. H., J. P. Nolan, L. A. Sklar, and J. Park 1996. Essential amino acids for substrate binding and catalysis of human flap endonuclease 1. J. Biol. Chem. 271:9173–9176.
  • Sherman, F., G. R. Fink, J. B. Hicks 1982. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Shiomi, T., Y. N. Harada, T. Saito, N. Shiomi, Y. Okuno, and J. Yamaizumi 1994. An Ercc5 gene with homology to yeast Rad2 is involved in group G xeroderma pigmentosum. Mutat. Res. 314:167–175.
  • Shobuike, T., S. Sugano, T. Yamashita, and J. Ikeda 1995. Characterization of cDNA encoding mouse homolog of fission yeast dhp1(+) gene: structural and functional conservation. Nucleic Acids Res. 23:357–361.
  • Sloboda, R. D., and J. Rosenbaum 1982. Purification and assay of microtubule-associated proteins (MAPs). Methods Enzymol. 85:409–416.
  • Solinger, J. A., and W.-D. Heyer. Unpublished observations.
  • Stevens, A. 1993. Eukaryotic nucleases and mRNA turnover, p. 449–471. In J. G. Belasco, G. Brawerman (ed.), Control of messenger RNA stability. Academic Press, Inc., San Diego, Calif.
  • Stevens, A. 1978. An exoribonuclease from Saccharomyces cerevisiae: effect of modifications of 5′ end groups on the hydrolysis of substrates to 5′ mononucleotides. Biochem. Biophys. Res. Commun. 81:656–661.
  • Stevens, A. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′-3′ mode of hydrolysis. J. Biol. Chem. 255:3080–3085.
  • Stevens, A., C. L. Hsu, K. R. Isham, and J. Larimer 1991. Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5′-3′ exoribonuclease 1. J. Bacteriol. 173:7024–7028.
  • Sugano, S., T. Shobuike, T. Takeda, A. Sugino, and J. Ikeda 1994. Molecular analysis of the Dhp1(+) gene of Schizosaccharomyces pombe—an essential gene that has homology to the Dst2 and Rat1 genes of Saccharomyces cerevisiae. Mol. Gen. Genet. 243:1–8.
  • Svoboda, A., J. Bahler, and J. Kohli 1995. Microtubule-driven nuclear movements and linear elements as meiosis-specific characteristics of the fission yeasts Schizosaccharomyces versatilis and Schizosaccharomyces pombe. Chromosoma 104:203–214.
  • Szankasi, P., and J. Smith 1996. Requirement of S. pombe exonuclease II, a homologue of S. cerevisiae Sep1, for normal mitotic growth and viability. Curr. Genet. 30:284–293.
  • Tishkoff, D. X., A. W. Johnson, and J. Kolodner 1991. Molecular and genetic analysis of the gene encoding the Saccharomyces cerevisiae strand exchange protein Sep1. Mol. Cell. Biol. 11:2593–2608.
  • Tishkoff, D. X., B. Rockmill, G. S. Roeder, and J. Kolodner 1995. The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination. Genetics 139:495–509.
  • Waga, S., G. Bauer, and J. Stillman 1994. Reconstitution of complete SV40 DNA replication with purified replication factors. J. Biol. Chem. 269:10923–10934.
  • Yang, X., V. Derbyshire, K. Ng, X. C. Sun, N. D. F. Grindley, and J. Joyce 1997. Biochemical and mutational studies of the 5′-3′ exonuclease of DNA polymerase I of Escherichia coli. J. Mol. Biol. 268:284–302.
  • Yeh, E., R. Driscoll, M. Coltrera, A. Olins, and J. Bloom 1991. A dynamin-like protein encoded by the yeast sporulation gene SPO15. Nature 349:713–714.
  • Zickler, D., and J. Kleckner 1998. The leptotene-zygotene transition of meiosis. Annu. Rev. Genet. 32:619–697.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.