17
Views
43
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Functional Analysis of the Yeast Glc7-Binding Protein Reg1 Identifies a Protein Phosphatase Type 1-Binding Motif as Essential for Repression of ADH2 Expression

, , &
Pages 6029-6040 | Received 22 Mar 1999, Accepted 17 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Baker, S. H., D. L. Frederick, A. Bloecher, and J. Tatchell 1997. Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics 145:615–626.
  • Blumberg, H. 1987. Dissertation. University of Washington, Seattle.
  • Bollen, M., and J. Stalmans 1992. The structure, role, and regulation of type 1 protein phosphatases. Crit. Rev. Biochem. Mol. Biol. 27:227–281.
  • Carlson, M., B. C. Osmond, and J. Botstein 1981. Mutants of yeast defective in sucrose utilization. Genetics 98:25–40.
  • Celenza, J. L., and J. Carlson 1984. Cloning and genetic mapping of SNF1, a gene required for expression of glucose-repressible genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:49–53.
  • Celenza, J. L., and J. Carlson 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.
  • Celenza, J. L., F. J. Eng, and J. Carlson 1989. Molecular analysis of the SNF4 gene of Saccharomyces cerevisiae: evidence for physical association of the SNF4 protein with the SNF1 protein kinase. Mol. Cell. Biol. 9:5045–5054.
  • Chen, M. X., Y. H. Chen, and J. Cohen 1993. PPQ, a novel protein phosphatase containing a Ser + Asn-rich amino-terminal domain, is involved in the regulation of protein synthesis. Eur. J. Biochem. 218:689–699 (Erratum, 221:1133, 1994.)
  • Cheng, C., D. Huang, and J. Roach 1997. Yeast PIG genes: PIG1 encodes a putative type 1 phosphatase subunit that interacts with the yeast glycogen synthase Gsy2p. Yeast 13:1–8.
  • Ciriacy, M. 1977. Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol. Gen. Genet. 154:213–220.
  • Cohen, P. 1989. The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58:453–508.
  • Cormack, B. P., R. H. Valdivia, and J. Falkow 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173:33–38.
  • Cross, F. R. 1997. ‘Marker swap’ plasmids: convenient tools for budding yeast molecular genetics. Yeast 13:647–653.
  • Da Cruz e Silva, E. F., V. Hughes, P. McDonald, M. J. Stark, and J. Cohen 1991. Protein phosphatase 2Bw and protein phosphatase Z are Saccharomyces cerevisiae enzymes. Biochim. Biophys. Acta 1089:269–272.
  • Denis, C. L. 1987. The effects of ADR1 and CCR1 gene dosage on the regulation of the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. Mol. Gen. Genet. 208:101–106.
  • Denis, C. L., and J. Audino 1991. The CCR1 (SNF1) and SCH9 protein kinases act independently of cAMP-dependent protein kinase and the transcriptional activator ADR1 in controlling yeast ADH2 expression. Mol. Gen. Genet. 229:395–399.
  • Denis, C. L., M. Ciriacy, and J. Young 1981. A positive regulatory gene is required for accumulation of the functional messenger RNA for the glucose-repressible alcohol dehydrogenase from Saccharomyces cerevisiae. J. Mol. Biol. 148:355–368.
  • Denis, C. L., S. C. Fontaine, D. Chase, B. E. Kemp, and J. Bemis 1992. ADR1c mutations enhance the ability of ADR1 to activate transcription by a mechanism that is independent of effects on cyclic AMP-dependent protein kinase phosphorylation of Ser-230. Mol. Cell. Biol. 12:1507–1514.
  • De Vit, M. J., J. A. Waddle, and J. Johnston 1997. Regulated nuclear translocation of the Mig1 glucose repressor. Mol. Biol. Cell 8:1603–1618.
  • Dombek, K. M., S. Camier, and J. Young 1993. ADH2 expression is repressed by REG1 independently of mutations that alter the phosphorylation of the yeast transcription factor ADR1. Mol. Cell. Biol. 13:4391–4399.
  • Dombek, K. M., and J. Young 1997. Cyclic AMP-dependent protein kinase inhibits ADH2 expression in part by decreasing expression of the transcription factor gene ADR1. Mol. Cell. Biol. 17:1450–1458.
  • Egloff, M. P., D. F. Johnson, G. Moorhead, P. T. Cohen, P. Cohen, and J. Barford 1997. Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16:1876–1887.
  • Entian, K. D., and J. Zimmermann 1980. Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Mol. Gen. Genet. 177:345–350.
  • Frederick, D. L., and J. Tatchell 1996. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol. Cell. Biol. 16:2922–2931.
  • Gancedo, J. M. 1998. Yeast carbon catabolite repression. Microbiol. Mol. Biol. Rev. 62:334–361.
  • Gietz, R. D., R. H. Schiestl, A. R. Willems, and J. Woods 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360.
  • Griggs, D. W., and J. Johnston 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101:181–191.
  • Guthrie, C., G. R. Fink 1991. Guide to yeast genetics and molecular biology 194: Academic Press, Inc., New York, N.Y.
  • Hardie, D. G., D. Carling, and J. Carlson 1998. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 67:821–855.
  • Hardy, T. A., D. Huang, and J. Roach 1994. Interactions between cAMP-dependent and SNF1 protein kinases in the control of glycogen accumulation in Saccharomyces cerevisiae. J. Biol. Chem. 269:27907–27913.
  • Higuchi, R. 1990. Recombinant PCR, p. 177–83. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, T. W. White (ed.), PCR protocols: a guide to methods and applications. Academic Press, Inc., New York, N.Y.
  • Hisamoto, N., D. L. Frederick, K. Sugimoto, K. Tatchell, and J. Matsumoto 1995. The EGP1 gene may be a positive regulator of protein phosphatase type 1 in the growth control of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:3767–3776.
  • Hollenberg, S. M., R. Sternglanz, P. F. Cheng, and J. Weintraub 1995. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15:3813–3822.
  • Huang, D., K. T. Chun, M. G. Goebl, and J. Roach 1996. Genetic interactions between REG1/HEX2 and GLC7, the gene encoding the protein phosphatase type 1 catalytic subunit in Saccharomyces cerevisiae. Genetics 143:119–127.
  • Hubbard, E. J., X. L. Yang, and J. Carlson 1992. Relationship of the cAMP-dependent protein kinase pathway to the SNF1 protein kinase and invertase expression in Saccharomyces cerevisiae. Genetics 130:71–80.
  • Jiang, R., and J. Carlson 1996. Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes Dev. 10:3105–3115.
  • Jiang, R., and J. Carlson 1997. The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex. Mol. Cell. Biol. 17:2099–2106.
  • Kennelly, P. J., and J. Krebs 1991. Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J. Biol. Chem. 266:15555–15558.
  • Ludin, K., R. Jiang, and J. Carlson 1998. Glucose-regulated interaction of a regulatory subunit of protein phosphatase 1 with the Snf1 protein kinase in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 95:6245–6250.
  • MacKelvie, S. H., P. D. Andrews, and J. Stark 1995. The Saccharomyces cerevisiae gene SDS22 encodes a potential regulator of the mitotic function of yeast type 1 protein phosphatase. Mol. Cell. Biol. 15:3777–3785.
  • Matsumoto, K., T. Yoshimatsu, and J. Oshima 1983. Recessive mutations conferring resistance to carbon catabolite repression of galactokinase synthesis in Saccharomyces cerevisiae. J. Bacteriol. 153:1405–1414.
  • Moser, M. J., M. R. Flory, and J. Davis 1997. Calmodulin localizes to the spindle pole body of Schizosaccharomyces pombe and performs an essential function in chromosome segregation. J. Cell Sci. 110:1805–1812.
  • Neigeborn, L., and J. Carlson 1987. Mutations causing constitutive invertase synthesis in yeast: genetic interactions with snf mutations. Genetics 115:247–253.
  • Niedenthal, R. K., L. Riles, M. Johnston, and J. Hegemann 1996. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast. Yeast 12:773–786.
  • Niederacher, D., and J. Entian 1991. Characterization of Hex2 protein, a negative regulatory element necessary for glucose repression in yeast. Eur. J. Biochem. 200:311–319.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Shenolikar, S. 1994. Protein serine/threonine phosphatases—new avenues for cell regulation. Annu. Rev. Cell Biol. 10:55–86.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Shero, J. H., M. Koval, F. Spencer, R. E. Palmer, P. Hieter, and J. Koshland 1991. Analysis of chromosome segregation in Saccharomyces cerevisiae. Methods Enzymol. 194:749–773.
  • Shuster, J., J. Yu, D. Cox, R. V. Chan, M. Smith, and J. Young 1986. ADR1-mediated regulation of ADH2 requires an inverted repeat sequence. Mol. Cell. Biol. 6:1894–1902.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sloan, J. 1998. Personal communication.
  • Stark, M. J. 1996. Yeast protein serine/threonine phosphatases: multiple roles and diverse regulation. Yeast 12:1647–1675.
  • Stuart, J. S., D. L. Frederick, C. M. Varner, and J. Tatchell 1994. The mutant type 1 protein phosphatase encoded by glc7-1 from Saccharomyces cerevisiae fails to interact productively with the GAC1-encoded regulatory subunit. Mol. Cell. Biol. 14:896–905.
  • Thompson-Jaeger, S., J. Francois, J. P. Gaughran, and J. Tatchell 1991. Deletion of SNF1 affects the nutrient response of yeast and resembles mutations which activate the adenylate cyclase pathway. Genetics 129:697–706.
  • Treitel, M. A., S. Kuchin, and J. Carlson 1998. Snf1 protein kinase regulates phosphorylation of the Mig1 repressor in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:6273–6280.
  • Tu, J., and J. Carlson 1995. REG1 binds to protein phosphatase type 1 and regulates glucose repression in Saccharomyces cerevisiae. EMBO J. 14:5939–5946.
  • Tu, J., W. Song, and J. Carlson 1996. Protein phosphatase type 1 interacts with proteins required for meiosis and other cellular processes in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4199–4206.
  • Tung, K. S., and J. Hopper 1995. The glucose repression and RAS-cAMP signal transduction pathways of Saccharomyces cerevisiae each affect RNA processing and the synthesis of a reporter protein. Mol. Gen. Genet. 247:48–54.
  • Tung, K. S., L. L. Norbeck, S. L. Nolan, N. S. Atkinson, and J. Hopper 1992. SRN1, a yeast gene involved in RNA processing, is identical to HEX2/REG1, a negative regulator in glucose repression. Mol. Cell. Biol. 12:2673–2680.
  • Vincent, A., G. Newnam, and J. Liebman 1994. The yeast translational allosuppressor, SAL6: a new member of the PP1-like phosphatase family with a long serine-rich N-terminal extension. Genetics 138:597–608.
  • Williamson, V. M., J. Bennetzen, E. T. Young, K. Nasmyth, and J. Hall 1980. Isolation of the structural gene for alcohol dehydrogenase by genetic complementation in yeast. Nature 283:214–216.
  • Wu, X. 1999. Personal communication.
  • Yang, X., R. Jiang, and J. Carlson 1994. A family of proteins containing a conserved domain that mediates interaction with the yeast SNF1 protein kinase complex. EMBO J. 13:5878–5886.
  • Zaman, Z., and J. Verwilghen 1979. Quantitation of proteins solubilized in sodium dodecyl sulfate-mercaptoethanol-Tris electrophoresis buffer. Anal. Biochem. 100:64–69.
  • Zimmermann, F. K., I. Kaufmann, H. Rasenberger, and J. Haubetamann 1977. Genetics of carbon catabolite repression in Saccharomyces cerevisiae: genes involved in the derepression process. Mol. Gen. Genet. 151:95–103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.