9
Views
55
CrossRef citations to date
0
Altmetric
Cell Growth and Development

E2F4 Actively Promotes the Initiation and Maintenance of Nerve Growth Factor-Induced Cell Differentiation

, &
Pages 6048-6056 | Received 16 Dec 1998, Accepted 22 Feb 1999, Published online: 27 Mar 2023

REFERENCES

  • Altman, J. 1972. Postnatal development of the cerebellar cortex in the rat. J. Comp. Neurol. 145:465–514.
  • Beijersbergen, R. L., L. Carlée, R. M. Kerkhoven, and J. Bernards 1995. Regulation of the retinoblastoma protein-related p107 by G1 cyclin complexes. Genes Dev. 9:1340–1353.
  • Beijersbergen, R. L., R. M. Kerkhoven, L. Zhu, L. Carlée, P. M. Voorhoeve, and J. Bernards 1994. E2F-4, a new member of the E2F gene family, has oncogenic activity and associates with p107 in vivo. Genes Dev. 8:2680–2690.
  • Boulukos, K. E., and J. Ziff 1993. Adenovirus 5 E1A proteins disrupt the neuronal phenotype and growth factor responsiveness of PC12 cells by a conserved region 1-dependent mechanism. Oncogene 8:237–248.
  • Brook, A., J. E. Xie, W. Du, and J. Dyson 1996. Requirements for dE2F function in proliferating cells and in post-mitotic differentiating cells. EMBO J. 15:3676–3683.
  • Cartwright, P., H. Muller, C. Wagener, K. Holm, and J. Helin 1998. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene 17:611–623.
  • Chong, J. A., J. Tapia-Ramirez, S. Kim, J. J. Toledo-Aral, Y. Zheng, M. C. Boutros, Y. M. Altshuller, M. A. Frohman, S. D. Kraner, and J. Mandel 1995. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell 80:949–957.
  • Corbeil, H. B., and J. Branton 1997. Characterization of an E2F-p130 complex formed during growth arrest. Oncogene 15:657–668.
  • Cowley, S., H. Paterson, P. Kemp, and J. Marshall 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Dagnino, L., C. J. Fry, S. M. Bartley, P. Farnham, B. L. Gallie, and J. Phillips 1997. Expression patterns of the E2F family of transcription factors during mouse nervous system development. Mech. Dev. 66:13–25.
  • Dagnino, L., C. J. Fry, S. M. Bartley, P. Farnham, B. L. Gallie, and J. Phillips 1997. Expression patterns of the E2F family of transcription factors during murine epithelial development. Cell Growth Differ. 8:553–563.
  • Di Cunto, F., G. Topley, E. Calautti, J. Hsiao, L. Ong, P. K. Seth, and J. Dotto 1998. Inhibitory function of p21Cip1/WAF1 in differentiation of primary mouse keratinocytes independent of cell cycle control. Science 280:1069–1072.
  • Gaubatz, S., J. G. Wood, and J. Livingston 1998. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc. Natl. Acad. Sci. USA 95:9190–9195.
  • Gonzalez-Sanchez, A., and J. Bader 1990. In vitro analysis of cardiac progenitor cell differentiation. Dev. Biol. 139:197–209.
  • Greene, L. A. 1978. Nerve growth factor prevents the death and stimulates the neuronal differentiation of clonal PC12 pheochromocytoma cells in serum-free medium. J. Cell Biol. 78:747–755.
  • Greene, L. A., and J. Tischler 1976. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc. Natl. Acad. Sci. USA 73:2424–2428.
  • Gu, W., J. W. Schneider, G. Condorelli, S. Kaushal, V. Mahdavi, and J. Nadal-Ginard 1993. Interaction of myogenic factors and the retinoblastoma protein mediates muscle cell commitment and differentiation. Cell 72:309–324.
  • Halegoua, S., R. C. Armstrong, and J. Kremer 1991. Dissecting the mode of action of a neuronal growth factor. Curr. Top. Microbiol. Immunol. 165:119–170.
  • Halevy, O., B. G. Novitch, D. B. Spicer, S. X. Skapek, J. Rhee, G. J. Hannon, D. Beach, and J. Lassar 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by myoD. Science 267:1018–1021.
  • Hass, R., H. Gunji, R. Datta, S. Kharbanda, A. Hartmann, R. Weichselbaum, and J. Kufe 1992. Differentiation and retrodifferentiation of human myeloid leukemia cells is associated with reversible induction of cell cycle-regulatory genes. Cancer Res. 52:1445–1450.
  • Hayes, T. E., N. L. M. Valtz, and J. McKay 1991. Downregulation of CDC2 upon terminal differentiation of neurons. New Biol. 3:259–269.
  • Helin, K. 1998. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8:28–35.
  • Hijmans, E. M., P. M. Voorhoeve, R. L. Beijersbergen, L. J. van ’t Veer, and J. Bernards 1995. E2F-5, a new E2F family member that interacts with p130 in vivo. Mol. Cell. Biol. 15:3082–3089.
  • Hurford, R. K. Jr., D. Cobrinik, M.-H. Lee, and J. Dyson 1997. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11:1447–1463.
  • Kadonaga, J. T., K. R. Carner, F. R. Masiarz, and J. Tjian 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51:1079–1090.
  • Kaelin, W. G. Jr., W. Krek, W. R. Sellers, J. A. DeCaprio, F. Ajchenbaum, C. S. Fuchs, T. Chittenden, L. Yue, P. J. Farnham, M. A. Blanar, D. M. Livingston, and J. Flemington 1992. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70:351–364.
  • Kew, D., and J. Kilpatrick 1990. Widespread organ expression of the rat proenkephalin gene during early postnatal development. Mol. Endocrinol. 4:337–340.
  • LeCouter, J. E., B. Kablar, P. F. Whyte, C. Ying, and J. Rudnicki 1998. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125:4669–4679.
  • Lee, E. Y.-H. P., N. Hu, S.-S. F. Yuan, L. A. Cox, A. Bradley, W.-H. Lee, and J. Herrup 1994. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8:2008–2021.
  • Li, J.-M., P. P.-C. Hu, X. Shen, Y. Yu, and J. Wang 1997. E2F4-RB and E2F4-p107 complexes suppress gene expression by transforming growth factor β through E2F binding sites. Proc. Natl. Acad. Sci. USA 94:4948–4953.
  • Lindeman, G. J., L. Dagnino, S. Gaubatz, Y. Xu, R. T. Bronson, H. B. Warren, and J. Livingston 1998. A specific, nonproliferative role for E2F-5 in choroid plexus function revealed by gene targeting. Genes Dev. 12:1092–1098.
  • Lindeman, G. J., S. Gaubatz, D. M. Livingston, and J. Ginsberg 1997. The subcellular localization of E2F-4 is cell-cycle dependent. Proc. Natl. Acad. Sci. USA 94:5095–5100.
  • Lukas, J., B. O. Petersen, K. Holm, J. Bartek, and J. Helin 1996. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol. Cell. Biol. 16:1047–1057.
  • Macleod, K. F., Y. Hu, and J. Jacks 1996. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 15:6178–6188.
  • Magae, J., C.-L. Wu, S. Illenye, E. Harlow, and J. Heintz 1996. Nuclear localization of DP and E2F transcription factors by heterodimeric partners and retinoblastoma protein family members. J. Cell Sci. 109:1717–1726.
  • McConnell, S. K. 1995. Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15:761–768.
  • Mesner, P. W., T. R. Winters, and J. Green 1992. Nerve growth factor withdrawal-induced cell death in neuronal PC12 cells resembles that in sympathetic neurons. J. Cell Biol. 119:1669–1680.
  • Moberg, K., M. A. Starz, and J. Lees 1996. E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol. Cell. Biol. 16:1436–1449.
  • Müller, R. 1995. Transcriptional regulation during the mammalian cell cycle. Trends Genet. 11:173–178.
  • Nevins, J. R. 1998. Toward an understanding of the functional complexity of the E2F and retinoblastoma families. Cell Growth Differ. 9:585–593.
  • Okano, H. J., D. W. Pfaff, and J. Gibbis 1993. RB and Cdc2 expression in brain: correlations with 3H-thymidine incorporation and neurogenesis. J. Neurosci. 13:2930–2938.
  • Puri, P. L., C. Balsano, V. L. Burgio, P. Chirillo, G. Natoli, L. Ricci, E. Mattei, A. Graessmann, and J. Levrero 1997. MyoD prevents cyclinA/cdk2 containing E2F complexes formation in terminally differentiated myocytes. Oncogene 14:1171–1184.
  • Puri, P. L., L. Cimino, M. Fulco, C. Zimmerman, N. B. La Thangue, A. Giordano, A. Graessmann, and J. Levrero 1998. Regulation of E2F4 mitogenic activity during terminal differentiation by its heterodimerization partners for nuclear translocation. Cancer Res. 58:1325–1331.
  • Raschella, G., B. Tanno, F. Bonetto, R. Amendola, T. Battista, A. De Luca, A. Giordano, and J. Paggi 1997. Retinoblastoma-related protein pRb2/p130 and its binding to the B-myb promoter increase during human neuroblastoma differentiation. J. Cell. Biochem. 67:297–303.
  • Ross, M. E. 1996. Cell division and the nervous system: regulating the cycle from neural differentiation to death. Trends Neurosci. 19:62–68.
  • Sardet, C., M. Vidal, D. Cobrinik, Y. Geng, C. Onufryk, A. Chen, and J. Weinberg 1995. E2F-4 and E2F-5, two members of the E2F family, are expressed in the early phases of the cell cycle. Proc. Natl. Acad. Sci. USA 92:2403–2407.
  • Sellers, W. R., B. G. Novitch, S. Miyake, A. Heith, G. A. Otterson, F. J. Kaye, A. B. Lassar, W. G. Kaelin Jr.. 1998. Stable binding to E2F is not required for the retinoblastoma protein to activate transcription, promote differentiation, and suppress tumor cell growth. Genes Dev. 12:95–106.
  • Smith, E. J., G. Leone, J. DeGregori, L. Jakoi, and J. Nevins 1996. The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol. Cell. Biol. 16:6965–6976.
  • Strom, A., P. Castella, J. Rockwood, J. Wagner, and J. Caudy 1997. Mediation of NGF signaling by post-translational inhibition of HES-1, a basic helix-loop-helix repressor of neuronal differentiation. Genes Dev. 11:3168–3181.
  • Tevosian, S. G., K. E. Paulson, R. Bronson, and J. Yee 1996. Expression of the E2F-1/DP-1 transcription factor in murine development. Cell Growth Differ. 7:43–52.
  • Trimarchi, J. M., B. Fairchild, R. Verona, K. Moberg, N. Andon, and J. Lees 1998. E2F-6, a member of the E2F family that can behave as a transcriptional repressor. Proc. Natl. Acad. Sci. USA 95:2850–2855.
  • Tso, J. Y., X. H. Sun, T. H. Kao, K. S. Reece, and J. Wu 1985. Isolation and characterization of rat and human glyceraldehyde-3-phosphate dehydrogenase cDNAs: genomic complexity and molecular evolution of the gene. Nucleic Acids Res. 13:2485–2502.
  • Vairo, G., D. M. Livingston, and J. Ginsberg 1995. Functional interaction between E2F-4 and p130: evidence for distinct mechanisms underlying growth suppression by different retinoblastoma protein family members. Genes Dev. 9:869–881.
  • Verona, R., K. Moberg, S. Estes, M. Starz, J. P. Vernon, and J. Lees 1997. E2F activity is regulated by cell cycle-dependent changes in subcellular localization. Mol. Cell. Biol. 17:7268–7282.
  • Wang, J., X. Chenivesse, B. Henglein, and J. Bréchot 1990. Hepatitis B virus integration in a cyclin A gene in a hepatocellular carcinoma. Nature 343:555–557.
  • Williams, C. D., D. C. Linch, T. S. Sorensen, N. B. La Thangue, and J. Thomas 1997. The predominant E2F complex in human primary haemopoietic cells and in AML blasts contains E2F-4, DP-1 and p130. Br. J. Haematol. 96:686–696.
  • Williams, C. D., D. C. Linch, M. J. Watts, and J. Thomas 1997. Characterization of cell cycle status and E2F complexes in mobilized CD34+ cells before and after cytokine stimulation. Blood 90:194–203.
  • Yan, G. Z., and J. Ziff 1997. Nerve growth factor induces transcription of the p21 WAF1/CIP1 and cyclin D1 genes in PC12 cells by activating the Sp1 transcription factor. J. Neurosci. 17:6122–6132.
  • Yan, G.-Z., and J. Ziff 1995. NGF regulates the PC12 cell cycle machinery through specific inhibition of the Cdk kinases and induction of cyclin D1. J. Neurosci. 15:6200–6212.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.