20
Views
65
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Strength of Interaction at the Raf Cysteine-Rich Domain Is a Critical Determinant of Response of Raf to Ras Family Small GTPases

, , , , &
Pages 6057-6064 | Received 30 Dec 1998, Accepted 03 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Ayruch, J. 1998. Insulin signal transduction through protein kinase cascades. Mol. Cell. Biochem. 182:31–48.
  • Bosch, E., H. Cherwinski, D. Peterson, and J. McMahon 1997. Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene 15:1021–1033.
  • Brtva, T. R., J. K. Drugan, S. Ghosh, R. S. Terrell, S. Campbell-Burk, R. M. Bell, and J. Der 1995. Two distinct Raf domains mediate interaction with Ras. J. Biol. Chem. 270:9809–9812.
  • Campbell, S. L., R. Khosravi-Far, K. L. Rossman, G. J. Clark, and J. Der 1998. Increasing complexity of Ras signaling. Oncogene 17:1395–1413.
  • Chuang, E., D. Barnard, L. Hettich, X.-F. Zhang, J. Avruch, and J. Marshall 1994. Critical binding and regulatory interactions between Ras and Raf occur through a small, stable N-terminal domain of Raf and specific Ras effector residues. Mol. Cell. Biol. 14:5318–5325.
  • Clark, G. J., J. K. Drugan, K. L. Rossman, J. W. Carpenter, K. Rogers-Graham, H. Fu, C. J. Der, and J. Campbell 1997. 14-3-3 ζ negatively regulates Raf-1 activity by interactions with the Raf-1 cysteine-rich domain. J. Biol. Chem. 272:20990–20993.
  • Cook, S. J., B. Rubinfeld, I. Albert, and J. McCormick 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblast. EMBO J. 12:3475–3485.
  • Cutler, R. E. Jr., R. M. Stephens, M. R. Saracino, and J. Morrison 1998. Autoregulation of the Raf-1 serine/threonine kinase. Proc. Natl. Acad. Sci. USA 95:9214–9219.
  • Daub, M., J. Jöckel, T. Quack, C. K. Weber, F. Schmitz, U. R. Rapp, A. Wittinghofer, and J. Block 1998. The RafC1 cysteine-rich domain contains multiple distinct regulatory epitopes which control Ras-dependent Raf activation. Mol. Cell. Biol. 18:6698–6710.
  • Daum, G., I. Eisenmann-Tappe, H.-W. Fries, J. Troppmair, and J. Rapp 1994. The ins and outs of Raf kinases. Trends Biochem. Sci. 19:474–480.
  • Dent, P., D. B. Reardon, D. K. Morrison, and J. Sturgill 1995. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro. Mol. Cell. Biol. 15:4125–4135.
  • Drugan, J. K., R. Khosravi-Far, M. A. White, C. J. Der, Y.-J. Sung, Y.-W. Hwang, and J. Campbell 1996. Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. J. Biol. Chem. 271:233–237.
  • Ghosh, S., W. Q. Xie, A. F. G. Quest, G. M. Mabrouk, J. C. Strum, and J. Bell 1994. The cysteine-rich region of Raf-1 kinase contains zinc, translocates to liposomes, and is adjacent to a segment that binds GTP-Ras. J. Biol. Chem. 269:10000–10007.
  • Herrmann, C., G. Horn, M. Spaargaren, and J. Wittinghofer 1996. Differential interaction of the Ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271:6794–6800.
  • Hu, C.-D., K. Kariya, G. Kotani, M. Shirouzu, S. Yokoyama, and J. Kataoka 1997. Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with Ras-dependent activation of Raf-1. J. Biol. Chem. 272:11702–11705.
  • Hu, C.-D., K. Kariya, T. Okada, X. Qi, C. Song, and J. Kataoka 1999. Effect of phosphorylation on activities of Rap1A to interact with Raf-1 and to suppress Ras-dependent Raf-1 activation. J. Biol. Chem. 274:48–51.
  • Hu, C.-D., K. Kariya, M. Tamada, K. Akasaka, M. Shirouzu, S. Yokoyama, and J. Kataoka 1995. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J. Biol. Chem. 270:30274–30277.
  • Kitayama, H., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and J. Noda 1989. A ras-related gene with transformation suppressor activity. Cell 56:77–84.
  • Kuroda, Y., N. Suzuki, and J. Kataoka 1993. The effect of posttranslational modifications on the interaction of Ras2 with adenylyl cyclase. Science 259:683–686.
  • Leevers, S. J., H. F. Paterson, and J. Marshall 1994. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature 369:411–414.
  • Luo, Z., B. Diaz, M. S. Marshall, and J. Avruch 1997. An intact Raf zinc finger is required for optimal binding to processed Ras and for Ras-dependent Raf activation in situ. Mol. Cell. Biol. 17:46–53.
  • Marais, R., Y. Light, H. F. Paterson, and J. Marshall 1995. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 14:3136–3145.
  • Marais, R., Y. Light, H. F. Paterson, C. S. Mason, and J. Marshall 1997. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic Ras and tyrosine kinases. J. Biol. Chem. 272:4378–4383.
  • Michaud, N. R., J. R. Fabian, K. D. Mathes, and J. Morrison 1995. 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol. Cell. Biol. 15:3390–3397.
  • Mineo, C., R. G. W. Anderson, and J. White 1997. Physical association with Ras enhances activation of membrane-bound Raf (RafCAAX). J. Biol. Chem. 272:10345–10348.
  • Mizutani, S., H. Koide, and J. Kaziro 1998. Isolation of a new protein factor required for activation of Raf-1 by Ha-Ras: partial purification from rat brain cytosols. Oncogene 16:2781–2786.
  • Morrison, D. K., R. E. Cutler Jr.. 1997. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9:174–179.
  • Mott, H. R., J. W. Carpenter, S. Zhong, S. Ghosh, R. M. Bell, and J. Campbell 1996. The solution structure of the Raf-1 cysteine-rich domain: a novel Ras and phospholipid binding site. Proc. Natl. Acad. Sci. USA 93:8312–8317.
  • Nassar, N., G. Horn, C. Herrmann, C. Block, R. Janknecht, and J. Wittinghofer 1996. Ras/Rap effector specificity determined by charge reversal. Nat. Struct. Biol. 3:723–729.
  • Nassar, N., G. Horn, C. Herrmann, A. Scherer, F. McCormick, and J. Wittinghofer 1995. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375:554–560.
  • Ohtsuka, T., K. Shimizu, B. Yamamori, S. Kuroda, and J. Takai 1996. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J. Biol. Chem. 271:1258–1261.
  • Okada, T., T. Masuda, M. Shinkai, K. Kariya, and J. Kataoka 1996. Post-translational modification of H-Ras is required for activation of, but not for association with, B-Raf. J. Biol. Chem. 271:4671–4678.
  • Papin, C., A. Denouel-Galy, D. Laugier, G. Calothy, and J. Eychène 1998. Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J. Biol. Chem. 273:24939–24947.
  • Pizon, V., P. Chardin, I. Lerosey, B. Olofsson, and J. Tavitian 1988. Human cDNAs rap 1 and rap 2 homologous to the Drosophila gene D ras 3 encode proteins closely related to ras in the “effector” region. Oncogene 3:201–204.
  • Rommel, C., G. Radziwill, J. Lovrić, J. Noeldeke, T. Heinicke, D. Jones, A. Aitken, and J. Moelling 1996. Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 12:609–619.
  • Roy, S., A. Lane, J. Yan, R. McPherson, and J. Hancock 1997. Activity of plasma membrane-recruited Raf-1 is regulated by Ras via the Raf zinc finger. J. Biol. Chem. 272:20139–20145.
  • Shinkai, M., T. Masuda, K. Kariya, M. Tamada, M. Shirouzu, S. Yokoyama, and J. Kataoka 1996. Difference in the mechanism of interaction of Raf-1 and B-Raf with H-Ras. Biochem. Biophys. Res. Commun. 223:729–734.
  • Shirouzu, M., K. Morinaka, S. Koyama, C.-D. Hu, N. Hori-Tamura, T. Okada, K. Kariya, T. Kataoka, A. Kikuchi, and J. Yokoyama 1998. Interactions of the amino acid residue at position 31 of the c-Ha-Ras protein with Raf-1 and RalGDS. J. Biol. Chem. 273:7737–7742.
  • Sithanandam, G., W. Kolch, F.-M. Duh, and J. Rapp 1990. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 5:1775–1780.
  • Stokoe, D., S. G. Macdonald, K. Cadwallander, M. Symons, and J. Hancock 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467.
  • Stokoe, D., and J. McCormick 1997. Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J. 16:2384–2396.
  • Storm, S. M., J. L. Cleveland, and J. Rapp 1990. Expression of raf family proto-oncogenes in normal mouse tissues. Oncogene 5:345–351.
  • Tamada, M., C.-D. Hu, K. Kariya, T. Okada, and J. Kataoka 1997. Membrane recruitment of Raf-1 is not the only function of Ras in Raf-1 activation. Oncogene 15:2959–2964.
  • Thorson, J. A., L. W. K. Yu, A. L. Hsu, N.-Y. Shih, P. R. Graves, J. William Tanner, P. M. Allen, H. Piwnica-Worms, and J. Shaw 1998. 14-3-3 proteins are required for maintenance of Raf-1 phosphorylation and kinase activity. Mol. Cell. Biol. 18:5229–5238.
  • Tzivion, G., Z. Luo, and J. Avruch 1998. A dimeric 14-3-3 protein is an essential cofactor for Raf kinase activity. Nature 394:88–92.
  • Vojtek, A. B., S. M. Hollenberg, and J. Cooper 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214.
  • Vossler, M. R., H. Yao, R. D. York, M.-G. Pan, C. S. Rim, and J. Stork 1997. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89:73–82.
  • Winkler, D. G., R. E. Cutler Jr., J. K. Drugan, S. Campbell, D. K. Morrison, and J. Cooper 1998. Identification of residues in the cysteine-rich domain of Raf-1 that control Ras binding and Raf-1 activity. J. Biol. Chem. 273:21578–21584.
  • Wittinghofer, A., and J. Nassar 1996. How Ras-related proteins talk to their effectors. Trends Biochem. Sci. 21:488–491.
  • Yamamori, B., S. Kuroda, K. Shimizu, K. Fukui, T. Ohtsuka, and J. Takai 1995. Purification of a Ras-dependent mitogen-activated protein kinase kinase kinase from bovine brain cytosol and its identification as a complex of B-Raf and 14-3-3 proteins. J. Biol. Chem. 270:11723–11726.
  • York, R. D., H. Yao, T. Dillon, C. L. Elling, S. P. Eckert, E. W. McCleskey, and J. Stork 1998. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622–626.
  • Zhang, X.-F., J. Settleman, J. M. Kyriakis, E. Takeuchi-Suzuki, S. J. Elledge, M. S. Marshall, J. T. Bruder, U. R. Rapp, and J. Avruch 1993. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 364:308–313.
  • Zhou, Y., X. Zhang, and J. Ebright 1991. Random mutagenesis of gene-sized DNA molecules by use of PCR with Taq DNA polymerase. Nucleic Acids Res. 19:6052.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.