35
Views
197
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Interactions of TLC1 (Which Encodes the RNA Subunit of Telomerase), TEL1, and MEC1 in Regulating Telomere Length in the Yeast Saccharomyces cerevisiae

, &
Pages 6065-6075 | Received 03 Mar 1999, Accepted 09 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and J. Kleckner 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545.
  • Brush, G. S., D. M. Morrow, P. Heiter, and J. Kelly 1996. The ATM homologue MEC1 is required for phosphorylation of replication protein A in yeast. Proc. Natl. Acad. Sci. USA 93:15075–15080.
  • Dahlen, M., T. Olsson, G. Kanter-Smoler, A. Ramne, and J. Sunnerhagen 1998. Regulation of telomere length by checkpoint genes in Schizosaccharomyces pombe. Mol. Biol. Cell 9:611–621.
  • De Lange, T. 1998. Telomeres and senescence: ending the debate. Science 279:334–335.
  • Emili, A. 1998. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2:183–189.
  • Greenwell, P. W., S. L. Kronmal, S. E. Porter, J. Gassenhuber, B. Obermaier, and J. Petes 1995. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82:823–829.
  • Greider, C. W. 1996. Telomere length regulation. Annu. Rev. Biochem. 65:337–365.
  • Guthrie C., G. R. Fink 1991. Guide to yeast genetics and molecular biology. Academic Press, Inc., San Diego, Calif.
  • Haber, J. E., P. C. Thorburn, and J. Rogers 1984. Meiotic and mitotic behavior of dicentric chromosomes in Saccharomyces cerevisiae. Genetics 106:185–205.
  • Herskowitz, I., and J. Jensen 1991. Putting the HO gene to work: practical uses for mating-type switching. Methods Enzymol. 194:132–146.
  • Kato, R., and J. Ogawa 1994. An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res. 22:3104–3112.
  • Kohli, J., H. Hottinger, P. Munz, A. Strauss, and J. Thuriaux 1977. Genetic mapping in Schizosaccharomyces pombe by mitotic and meiotic analysis and induced haploidization. Genetics 87:471–489.
  • Lendvay, T. S., D. K. Morris, J. Sah, B. Balasubramanian, and J. Lundblad 1996. Senescence mutants of Saccharomyces cerevisiae with a defect in telomere replication identify three additional EST genes. Genetics 144:1399–1412.
  • Lin, J. J., and J. Zakian 1996. The Saccharomyces CDC13 protein is a single-strand TG1–3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93:13760–13765.
  • Lingner, J., T. R. Cech, T. R. Hughes, and J. Lundblad 1997. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro telomerase activity. Proc. Natl. Acad. Sci. USA 94:11190–11195.
  • Lingner, J., T. R. Hughes, A. Shevchenko, M. Mann, V. Lundblad, and J. Cech 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276:561–567.
  • Louis, E. J. 1995. The chromosome ends of Saccharomyces cerevisiae. Yeast 11:1553–1573.
  • Lundblad, V., and J. Blackburn 1993. An alternative pathway for yeast telomere maintenance rescues est1− senescence. Cell 73:347–360.
  • Lundblad, V., and J. Szostak 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633–643.
  • Lustig, A. J., and J. Petes 1986. Identification of yeast mutants with altered telomere structure. Proc. Natl. Acad. Sci. USA 83:1398–1402.
  • Morrow, D. M., D. A. Tagle, Y. Shiloh, F. S. Collins, and J. Hieter 1995. TEL1, an S. cerevisiae homolog of the human gene mutated in ataxia telangiectasia, is functionally related to the yeast checkpoint gene MEC1. Cell 82:831–840.
  • Naito, T., A. Matsuura, and J. Ishikawa 1998. Circular chromosome formation in a fission yeast mutant defective in two ATM homologues. Nat. Genet. 20:203–206.
  • Nugent, C. I., T. R. Hughes, N. F. Lue, and J. Lundblad 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249–252.
  • Paciotti, V., G. Lucchini, P. Plevani, and J. Longhese 1998. Mec1 is essential for phosphorylation of the yeast DNA damage checkpoint protein Ddc1p, which physically interacts with Mec3p. EMBO J. 17:4199–4209.
  • Pardue, M. L., O. N. Danilevskaya, K. Lowenhaupt, F. Slot, and J. Traverse 1996. Drosophila telomeres: new views on chromosome evolution. Trends Genet. 12:48–52.
  • Paulovich, A. G., R. U. Margulies, B. M. Garvik, and J. Hartwell 1997. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 145:45–62.
  • Porter, S. E., P. W. Greenwell, K. B. Ritchie, and J. Petes 1996. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24:582–585.
  • Sanchez, Y., B. A. Desany, W. L. Jones, Q. Liu, B. Wang, and J. Elledge 1996. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360.
  • Savitsky, K. et al.. 1995. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268:1749–1753.
  • Schiestl, R. H., and J. Petes 1991. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 88:7585–7589.
  • Shampay, J., J. W. Szostak, and J. Blackburn 1984. DNA sequences of telomeres maintained in yeast. Nature 310:154–157.
  • Sikorski, R. S., and J. Hieter 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Singer, M. S., and J. Gottschling 1994. TLC1: template RNA component of Saccharomyces cerevisiae telomerase. Science 266:404–409.
  • Smilenov, L. B., S. E. Morgan, W. Mellado, S. G. Sawant, M. B. Kastan, and J. Pandita 1997. Influence of ATM function on telomere metabolism. Oncogene 15:2659–2665.
  • Stapleton, A., and J. Petes 1991. The Tn3 β-lactamase gene acts as a hotspot for meiotic recombination in yeast. Genetics 127:39–51.
  • Strand, M., T. A. Prolla, R. M. Liskay, and J. Petes 1993. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365:274–276.
  • Thomas, B. J., and J. Rothstein 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630.
  • Tsukiyama, T., and J. Wu 1997. Chromatin modeling and transcription. Curr. Opin. Genet. Dev. 7:182–191.
  • Vialard, J. E., C. S. Gilbert, C. M. Green, and J. Lowndes 1998. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J. 17:5679–5688.
  • Virta-Pearlman, V., D. K. Morris, and J. Lundblad 1996. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10:3094–3104.
  • Wach, A., A. Brachat, R. Pohlmann, and J. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Walmsley, R. M., C. S. M. Chan, B.-K. Tye, and J. Petes 1984. Unusual DNA sequences associated with the ends of yeast chromosomes. Nature 310:157–160.
  • Walmsley, R. M., and J. Petes 1985. Genetic control of telomere length in yeast. Proc. Natl. Acad. Sci. USA 82:506–510.
  • Weinert, T. A., G. L. Kiser, and J. Hartwell 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–665.
  • Zakian, V. A. 1996. Structure, function, and replication of Saccharomyces cerevisiae telomeres. Annu. Rev. Genet. 30:141–172.
  • Zhao, X., E. G. Muller, and J. Rothstein 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2:329–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.