15
Views
72
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Activation of Silent Replication Origins at Autonomously Replicating Sequence Elements near the HML Locus in Budding Yeast

, &
Pages 6098-6109 | Received 10 Mar 1999, Accepted 01 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Aladjem, M. I., M. Groudine, L. L. Brody, E. S. Dieken, R. E. Fournier, G. M. Wahl, and J. Epner 1995. Participation of the human beta-globin locus control region in initiation of DNA replication. Science 270:815–819.
  • Bell, S. P., R. Kobayashi, and J. Stillman 1993. Yeast origin recognition complex functions in transcription silencing and DNA replication. Science 262:1844–1849.
  • Bell, S. P., J. Mitchell, J. Leber, R. Kobayashi, and J. Stillman 1995. The multidomain structure of Orc1p reveals similarity to regulators of DNA replication and transcriptional silencing. Cell 83:563–568.
  • Benard, M., C. Lagnel, D. Pallotta, and J. Pierron 1996. Mapping of a replication origin within the promoter region of two unlinked, abundantly transcribed actin genes of Physarum polycephalum. Mol. Cell. Biol. 16:968–976.
  • Bornaes, C., M. W. Ignjatovic, P. Schjerling, M. C. Kielland-Brandt, and J. Holmberg 1993. A regulatory element in the CHA1 promoter which confers inducibility by serine and threonine on Saccharomyces cerevisiae genes. Mol. Cell. Biol. 13:7604–7611.
  • Bousset, K., and J. Diffley 1998. The Cdc7 protein kinase is required for origin firing during S phase. Genes Dev. 12:480–490.
  • Brand, A. H., L. Breeden, J. Abraham, R. Sternglanz, and J. Nasmyth 1985. Characterization of a “silencer” in yeast: a DNA sequence with properties opposite to those of a transcriptional enhancer. Cell 41:41–48.
  • Brand, A. H., G. Micklem, and J. Nasmyth 1987. A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation. Cell 51:709–719.
  • Brewer, B. J., and J. Fangman 1993. Initiation at closely spaced replication origins in a yeast chromosome. Science 262:1728–1731.
  • Brewer, B. J., and J. Fangman 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51:463–471.
  • Buchman, A. R., W. J. Kimmerly, J. Rine, and J. Kornberg 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autonomously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:210–225.
  • Chien, C. T., S. Buck, R. Sternglanz, and J. Shore 1993. Targeting of SIR1 protein establishes transcriptional silencing at HM loci and telomeres in yeast. Cell 75:531–541.
  • Cockell, M., F. Palladino, T. Laroche, G. Kyrion, C. Liu, A. J. Lustig, and J. Gasser 1995. The carboxy termini of Sir4 and Rap1 affect Sir3 localization: evidence for a multicomponent complex required for yeast telomeric silencing. J. Cell Biol. 129:909–924.
  • Collins, I., and J. Newlon 1994. Chromosomal DNA replication initiates at the same origins in meiosis and mitosis. Mol. Cell. Biol. 14:3524–3534.
  • DePamphilis, M. L. 1993. How transcription factors regulate origins of DNA replication in eukaryotic cells. Trends Cell Biol. 3:161–167.
  • DePamphilis, M. L. 1998. Initiation of DNA replication in eukaryotic chromosomes. J. Cell Biochem. Suppl. 31:8–17.
  • Dershowitz, A., and C. S. Newlon. Personal communication.
  • Dershowitz, A., and J. Newlon 1993. The effect on chromosome stability of deleting replication origins. Mol. Cell. Biol. 13:391–398.
  • Deshpande, A. M., and J. Newlon 1992. The ARS consensus sequence is required for chromosomal origin function in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4305–4313.
  • Dillin, A., and J. Rine 1997. Separable functions of ORC5 in replication initiation and silencing in Saccharomyces cerevisiae. Genetics 147:1053–1062.
  • Dubey, D. D., L. R. Davis, S. A. Greenfeder, L. Y. Ong, J. G. Zhu, J. R. Broach, C. S. Newlon, and J. Huberman 1991. Evidence suggesting that the ARS elements associated with silencers of the yeast mating-type locus HML do not function as chromosomal DNA replication origins. Mol. Cell. Biol. 11:5346–5355.
  • Fangman, W. L., and J. Brewer 1991. Activation of replication origins within yeast chromosomes. Annu. Rev. Cell Biol. 7:375–402.
  • Fangman, W. L., and J. Brewer 1992. A question of time: replication origins of eukaryotic chromosomes. Cell 71:363–366.
  • Ferguson, B. M., and J. Fangman 1992. A position effect on the time of replication origin activation in yeast. Cell 68:333–339.
  • Foss, M., F. J. McNally, P. Laurenson, and J. Rine 1993. Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae. Science 262:1838–1844.
  • Fox, C. A., S. Loo, A. Dillin, and J. Rine 1995. The origin recognition complex has essential functions in transcriptional silencing and chromosomal replication. Genes Dev. 9:911–924.
  • Gilbert, D. M. 1998. Replication origins in yeast versus metazoa: separation of the haves and the have nots. Curr. Opin. Genet. Dev. 8:194–199.
  • Goldman, M. A., G. P. Holmquist, M. C. Gray, L. A. Caston, and J. Nag 1984. Replication timing of genes and middle repetitive sequences. Science 224:686–692.
  • Hatton, K. S., V. Dhar, E. H. Brown, M. A. Iqbal, S. Stuart, V. T. Didamo, and J. Schildkraut 1988. Replication program of active and inactive multigene families in mammalian cells. Mol. Cell. Biol. 8:2149–2158.
  • Hecht, A., T. Laroche, S. Strahl-Bolsinger, S. M. Gasser, and J. Grunstein 1995. Histone H3 and H4 N-termini interact with SIR3 and SIR4 proteins: a molecular model for the formation of heterochromatin in yeast. Cell 80:583–592.
  • Hecht, A., S. Strahl-Bolsinger, and J. Grunstein 1996. Spreading of transcriptional repressor SIR3 from telomeric heterochromatin. Nature 383:92–96.
  • Huang, R. Y., and J. Kowalski 1993. A DNA unwinding element and an ARS consensus comprise a replication origin within a yeast chromosome. EMBO J. 12:4521–4531.
  • Huang, R. Y., and J. Kowalski 1996. Multiple DNA elements in ARS305 determine replication origin activity in a yeast chromosome. Nucleic Acids Res. 24:816–823.
  • Huberman, J. A., L. D. Spotila, K. A. Nawotka, S. M. el-Assouli, and J. Davis 1987. The in vivo replication origin of the yeast 2 microns plasmid. Cell 51:473–481.
  • Huberman, J. A., J. G. Zhu, L. R. Davis, and J. Newlon 1988. Close association of a DNA replication origin and an ARS element on chromosome III of the yeast, Saccharomyces cerevisiae. Nucleic Acids Res. 16:6373–6384.
  • Hurst, S. T., and J. Rivier 1999. Identification of a compound origin of replication at the HMR-E locus in Saccharomyces cerevisiae. J. Biol. Chem. 274:4155–4159.
  • Hyrien, O., C. Maric, and J. Mechali 1995. Transition in specification of embryonic metazoan DNA replication origins. Science 270:994–997.
  • Kalejta, R. F., X. Li, L. D. Mesner, P. A. Dijkwel, H. B. Lin, and J. Hamlin 1998. Distal sequences, but not ori-beta/OBR-1, are essential for initiation of DNA replication in the Chinese hamster DHFR origin. Mol. Cell 2:797–806.
  • Mahoney, D. J., and J. Broach 1989. The HML mating-type cassette of Saccharomyces cerevisiae is regulated by two separate but functionally equivalent silencers. Mol. Cell. Biol. 9:4621–4630.
  • Mahoney, D. J., R. Marquardt, G. J. Shei, A. B. Rose, and J. Broach 1991. Mutations in the HML E silencer of Saccharomyces cerevisiae yield metastable inheritance of transcriptional repression. Genes Dev. 5:605–615.
  • Maniatis, T., E. F. Fritsch, J. Sambrook 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Marahrens, Y., and J. Stillman 1994. Replicator dominance in a eukaryotic chromosome. EMBO J. 13:3395–3400.
  • Marahrens, Y., and J. Stillman 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823.
  • Micklem, G., A. Rowley, J. Harwood, K. Nasmyth, and J. Diffley 1993. Yeast origin recognition complex is involved in DNA replication and transcriptional silencing. Nature 366:87–89.
  • Miller, C. A., and D. Kowalski. Unpublished data.
  • Miller, C. A., and J. Kowalski 1993. cis-Acting components in the replication origin from ribosomal DNA of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:5360–5369.
  • Moreira, J. M., and J. Holmberg 1998. Nucleosome structure of the yeast CHA1 promoter: analysis of activation-dependent chromatin remodeling of an RNA-polymerase-II-transcribed gene in TBP and RNA pol II mutants defective in vivo in response to acidic activators. EMBO J. 17:6028–6038.
  • Nasmyth, K. 1996. Viewpoint: putting the cell cycle in order. Science 274:1643–1645.
  • Natale, D., and D. Kowalski. Unpublished data.
  • Natale, D. A., R. M. Umek, and J. Kowalski 1993. Ease of DNA unwinding is a conserved property of yeast replication origins. Nucleic Acids Res. 21:555–560.
  • Newlon, C. S. 1997. Putting it all together: building a prereplicative complex. Cell 91:717–720.
  • Newlon, C. S., I. Collins, A. Dershowitz, A. M. Deshpande, S. A. Greenfeder, L. Y. Ong, and J. Theis 1993. Analysis of replication origin function on chromosome III of Saccharomyces cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 58:415–423.
  • Newlon, C. S., L. R. Lipchitz, I. Collins, A. Deshpande, R. J. Devenish, R. P. Green, H. L. Klein, T. G. Palzkill, R. B. Ren, S. Synn et al.. 1991. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics 129:343–357.
  • Oliver, S. G., Q. J. van der Aart, M. L. Agostoni-Carbone, M. Aigle, L. Alberghina, D. Alexandraki, G. Antoine, R. Anwar, J. P. Ballesta, P. Benit et al.. 1992. The complete DNA sequence of yeast chromosome III. Nature 357:38–46.
  • Palladino, F., T. Laroche, E. Gilson, A. Axelrod, L. Pillus, and J. Gasser 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75:543–555.
  • Petersen, J. G., M. C. Kielland-Brandt, T. Nilsson-Tillgren, C. Bornaes, and J. Holmberg 1988. Molecular genetics of serine and threonine catabolism in Saccharomyces cerevisiae. Genetics 119:527–534.
  • Renauld, H., O. M. Aparicio, P. D. Zierath, B. L. Billington, S. K. Chhablani, and J. Gottschling 1993. Silent domains are assembled continuously from the telomere and are defined by promoter distance and strength, and by SIR3 dosage. Genes Dev. 7:1133–1145.
  • Reynolds, A. E., R. M. McCarroll, C. S. Newlon, and J. Fangman 1989. Time of replication of ARS elements along yeast chromosome III. Mol. Cell. Biol. 9:4488–4494.
  • Rine, J., and J. Herskowitz 1987. Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22.
  • Rivier, D. H., J. L. Ekena, and J. Rine 1999. HMR-I is an origin of replication and a silencer in Saccharomyces cerevisiae. Genetics 151:521–529.
  • Rivier, D. H., and J. Rine 1992. An origin of DNA replication and a transcription silencer require a common element. Science 256:659–663.
  • Santocanale, C., and J. Diffley 1996. ORC- and Cdc6-dependent complexes at active and inactive chromosomal replication origins in Saccharomyces cerevisiae. EMBO J. 15:6671–6679.
  • Sherman, F., G. R. Fink, J. B. Hicks 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shirahige, K., T. Iwasaki, M. B. Rashid, N. Ogasawara, and J. Yoshikawa 1993. Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:5043–5056.
  • Shore, D., and J. Nasmyth 1987. Purification and cloning of a DNA binding protein from yeast that binds to both silencer and activator elements. Cell 51:721–732.
  • Simpson, R. T. 1990. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343:387–389.
  • Singh, J., and J. Klar 1992. Active genes in budding yeast display enhanced in vivo accessibility to foreign DNA methylases: a novel in vivo probe for chromatin structure of yeast. Genes Dev. 6:186–196.
  • Stinchcomb, D. T., K. Struhl, and J. Davis 1979. Isolation and characterisation of a yeast chromosomal replicator. Nature 282:39–43.
  • Tanaka, S., and J. Isono 1993. Correlation between observed transcripts and sequenced ORFs of chromosome III of Saccharomyces cerevisiae. Nucleic Acids Res. 21:1149–1153.
  • Theis, J. F., and J. Newlon 1994. Domain B of ARS307 contains two functional elements and contributes to chromosomal replication origin function. Mol. Cell. Biol. 14:7652–7659.
  • Triolo, T., and J. Sternglanz 1996. Role of interactions between the origin recognition complex and SIR1 in transcriptional silencing. Nature 381:251–253.
  • Weiss, K., and J. Simpson 1998. High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLalpha. Mol. Cell. Biol. 18:5392–5403.
  • Wu, C., K. Weiss, C. Yang, M. A. Harris, B. K. Tye, C. S. Newlon, R. T. Simpson, and J. Haber 1998. Mcm1 regulates donor preference controlled by the recombination enhancer in Saccharomyces mating-type switching. Genes Dev. 12:1726–1737.
  • Wu, X., J. K. Moore, and J. Haber 1996. Mechanism of MAT alpha donor preference during mating-type switching of Saccharomyces cerevisiae. Mol. Cell. Biol. 16:657–668.
  • Zhu, J., C. S. Newlon, and J. Huberman 1992. Localization of a DNA replication origin and termination zone on chromosome III of Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4733–4741.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.