2
Views
40
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Identification by In Vivo Genomic Footprinting of a Transcriptional Switch Containing NF-κB and Sp1 That Regulates the IκBα Promoter

, , &
Pages 6140-6153 | Received 08 Apr 1999, Accepted 09 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Algarté, M., P. Lécine, R. Costello, A. Plet, D. Olive, and J. Imbert 1995. In vivo regulation of interleukin-2 receptor alpha gene transcription by the coordinated binding of constitutive and inducible factors in human primary T cells. EMBO J. 16:5060–5072.
  • Alroy, I., L. Soussan, R. Seger, and J. Yarden 1999. Neu differentiation factor stimulates phosphorylation and activation of the Sp1 transcription factor. Mol. Cell. Biol. 19:1961–1972.
  • Arenzana-Seisdedos, F., B. Fernandez, I. Dominguez, J. M. Jacqué, D. Thomas, M. T. Diaz-Meco, J. Moscat, and J. Virelizier 1993. Phosphatidylcholine hydrolysis activates NF-κB and increases human immunodeficiency virus replication in human monocytes and T lymphocytes. J. Virol. 67:6596–6604.
  • Armstrong, S. A., D. A. Barry, R. W. Leggett, and J. Mueller 1997. Casein kinase II-mediated phosphorylation of the C terminus of Sp1 decreases its DNA binding activity. J. Biol. Chem. 272:13489–13495.
  • Baeuerle, P. A., and J. Baltimore 1996. NF-κB: ten years after. Cell 87:13–20.
  • Baeuerle, P. A., and J. Henkel 1994. Function and activation of NF-κB in the immune system. Annu. Rev. Immunol. 12:141–179.
  • Baldwin, A. S. Jr.. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–681.
  • Barroga, C. F., J. K. Stevenson, E. M. Schwarz, and J. Verma 1995. Constitutive phosphorylation of IκBα by casein kinase II. Proc. Natl. Acad. Sci. USA 92:7637–7641.
  • Beauparlant, P., R. Lin, and J. Hiscott 1996. The role of the C-terminal domain of IκBα in protein degradation and stability. J. Biol. Chem. 271:10690–10696.
  • Beg, A. A., S. Baldwin Jr.. 1993. The IκB proteins: multifunctional regulators of Rel/NF-κB transcription factors. Genes Dev. 7:2064–2070.
  • Beg, A. A., S. M. Ruben, R. I. Scheinman, S. Haskill, C. A. Rosen, A. S. Baldwin Jr.. 1992. IκB interacts with the nuclear localization sequence of the subunits of NF-κB: a mechanism for cytoplasmic retention. Genes Dev. 6:1899–1913.
  • Bitar, R., P. Beauparlant, R. Lin, P. Pitha, and J. Hiscott 1995. Retrovirus-mediated transfer of nuclear factor-κB subunit genes modulates IκBα and interferon β expression. Cell Growth Differ. 6:965–976.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and J. Ballard 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., G. Franzoso, L. Baldi, L. Carlson, L. Mills, Y.-C. Lin, S. Gerstberger, and J. Siebenlist 1997. The signal response of IκBα is regulated by transferable N- and C-terminal domains. Mol. Cell. Biol. 17:3021–3027.
  • Brown, K., S. Park, T. Kanno, G. Franzoso, and J. Siebenlist 1993. Mutual regulation of the transcriptional activator NF-κB and its inhibitor, IκBα. Proc. Natl. Acad. Sci. USA 90:2532–2536.
  • Chen, Z., J. Hagler, V. J. Palombella, F. Melandri, D. Scherer, D. Ballard, and J. Maniatis 1995. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Chiao, P. J., S. Miyamoto, and J. Verma 1994. Autoregulation of IκBα activity. Proc. Natl. Acad. Sci. USA 91:28–32.
  • de Martin, R., B. Vanhove, Q. Cheng, E. Hofer, V. Csizmadia, H. Winkler, and J. Bach 1993. Cytokine-inducible expression in endothelial cells of an IκBα-like gene is regulated by NF-κB. EMBO J. 12:2773–2779.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and J. Karin 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554.
  • Doerre, S., P. Sista, S.-C. Sun, D. W. Ballard, and J. Greene 1993. The c-rel protooncogene product represses NF-κB p65-mediated transcriptional activation of the long terminal repeat of type 1 human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 90:1023–1027.
  • Ernst, M. K., L. L. Dunn, and J. Rice 1995. The PEST-like sequence of IκBα is responsible for inhibition of DNA binding but not for cytoplasmic retention of c-Rel or RelA homodimers. Mol. Cell. Biol. 15:872–882.
  • Fujita, T., G. P. Nolan, S. Ghosh, and J. Baltimore 1992. Independent modes of transcriptional activation by the p50 and p65 subunits of NF-κB. Genes Dev. 6:775–787.
  • Garrity, P. A., and J. Wold 1992. Effects of different DNA polymerases in ligation-mediated PCR: enhanced genomic sequencing and in vivo footprinting. Proc. Natl. Acad. Sci. USA 89:1021–1025.
  • Gerondakis, S., N. Morrice, I. B. Richardson, R. Wettenhall, J. Fecondo, and J. Grumont 1993. The activity of a 70 kilodalton IκB molecule identical to the carboxyl terminus of the p105 NF-κB precursor is modulated by protein kinase A. Cell Growth Differ. 4:617–627.
  • Gerritsen, M. E., A. J. Williams, A. S. Neish, S. Moore, Y. Shi, and J. Collins 1997. CREB-binding protein/p300 are transcriptional coactivators of p65. Proc. Natl. Acad. Sci. USA 7:2927–2932.
  • Haskill, S., A. A. Beg, S. M. Tompkins, J. S. Morris, A. D. Yurochko, A. Sampson-Johannes, K. Mondal, P. Ralph, A. S. Baldwin Jr.. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes IκB-like activity. Cell 65:1281–1289.
  • Hatada, E. N., A. Nieters, F. G. Wulczyn, M. Naumann, R. Meyer, G. Nucifora, T. W. McKeithan, and J. Scheidereit 1992. The ankyrin repeat domains of the NF-κB precursor p105 and the proto-oncogene bcl-3 act as specific inhibitors of NF-κB DNA binding. Proc. Natl. Acad. Sci. USA 89:2489–2493.
  • Hirano, F., H. Tanaka, Y. Hirano, M. Hiramoto, H. Handa, I. Makino, and J. Scheidereit 1998. Functional interference of Sp1 and NF-κB through the same DNA binding site. Mol. Cell. Biol. 18:1266–1274.
  • Ito, C. Y., A. G. Kazantsev, A. S. Baldwin Jr.. 1994. Three NF-κB sites in the IκB-α promoter are required for induction of gene expression by TNFα. Nucleic Acids Res. 22:3787–3792.
  • Jaffray, E., K. M. Wood, and J. Hay 1995. Domain organization of IκBα and the sites of interaction with NF-κB p65. Mol. Cell. Biol. 15:2166–2172.
  • Kwon, H., N. Pelletier, C. DeLuca, P. Genin, S. Cisternas, R. Lin, M. A. Wainberg, and J. Hiscott 1998. Inducible expression of IκBα repressor mutants interferes with NF-κB activity and HIV-1 replication in Jurkat T cells. J. Biol. Chem. 273:7431–7440.
  • Lacoste, J., M. D’Addario, A. Roulston, M. A. Wainberg, and J. Hiscott 1990. Cell-specific differences in activation of NF-κB regulatory elements of human immunodeficiency virus and beta interferon promoters by tumor necrosis factor. J. Virol. 64:4726–4734.
  • Landt, O., H. P. Grunert, and J. Hahn 1990. A general method for rapid site-directed mutagenesis using the polymerase chain reaction. Gene 96:125–128.
  • La Rosa, F. A., J. W. Pierce, and J. Sonenshein 1994. Differential regulation of the c-myc oncogene promoter by the NF-κB rel family of transcription factors. Mol. Cell. Biol. 14:1039–1044.
  • Le Bail, O., R. Schmidt-Ullrich, and J. Israël 1993. Promoter analysis of the gene encoding the IκB-α/MAD 3 inhibitor of NF-κB: positive regulation by members of the rel/NF-κB family. EMBO J. 12:5043–5049.
  • Li, C.-C., M. Korner, D. K. Ferris, E. Chen, R.-M. Dai, and J. Longo 1994. NF-κB/Rel family members are physically associated phosphoprotein. Biochem. J. 303:499–506.
  • Lin, R., P. Beauparlant, C. Makris, S. Meloche, and J. Hiscott 1996. Phosphorylation of IκBα in the C-terminal PEST domain by casein kinase II affects intrinsic protein stability. Mol. Cell. Biol. 16:1401–1409.
  • Lin, R., D. Gewert, and J. Hiscott 1995. Differential transcriptional activation in vitro by NF-κB/Rel proteins. J. Biol. Chem. 270:3123–3131.
  • Liou, H.-C., G. P. Nolan, S. Ghosh, T. Fujita, and J. Baltimore 1992. The NF-κB p50 precursor, p105, contains an internal IκB-like inhibitor that preferentially inhibits p50. EMBO J. 11:3003–3009.
  • McElhinny, J. A., S. A. Trushin, G. D. Bren, N. Chester, and J. Paya 1996. Casein kinase II phosphorylates IκBα at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol. Cell. Biol. 16:899–906.
  • Mercurio, F., J. A. DiDonato, C. Rosette, and J. Karin 1993. p105 and p98 precursor proteins play an active role in NF-κB mediated signal transduction. Genes Dev. 7:705–718.
  • Miyamoto, S., M. Maki, M. J. Schmitt, M. Hatanaka, and J. Verma 1994. Tumor necrosis factor α-induced phosphorylation of IκBα is a signal for its degradation but not dissociation from NF-κB. Proc. Natl. Acad. Sci. USA 91:12740–12744.
  • Mueller, P. R., and J. Wold 1989. In vivo footprinting of a muscle specific enhancer by ligation mediated PCR. Science 246:780–786.
  • Owen, G. I., J. K. Richer, L. Tung, G. Takimoto, and J. Horwitz 1998. Progesterone regulates transcription of the p21(WAF1) cyclin-dependent kinase inhibitor gene through Sp1 and CBP/p300. J. Biol. Chem. 273:10696–10701.
  • Perkins, N. D., N. L. Edwards, C. S. Duckett, A. B. Agranoff, R. M. Schmid, and J. Nabel 1993. A cooperative interaction between NF-κB and Sp1 is required for HIV enhancer activation. EMBO J. 12:3551–3558.
  • Perkins, N. D., R. M. Schmid, C. S. Duckett, K. Leung, N. R. Rice, and J. Nabel 1992. Distinct combinations of NF-κB subunits determine the specificity of transcriptional activation. Proc. Natl. Acad. Sci. USA 89:1529–1533.
  • Petropoulos, L., R. Lin, and J. Hiscott 1996. Human T cell leukemia virus type 1 Tax protein increases NF-κB dimer formation and antagonizes the inhibitory activity of the IκBα regulatory protein. Virology 225:52–64.
  • Régnier, C., H. Y. Song, X. Gao, D. V. Goeddel, Z. Cao, and J. Rothe 1997. Identification and characterization of an IκB kinase. Cell 90:373–383.
  • Rodriguez, M. S., I. Michalopoulos, F. Arenzana-Seisdedos, and J. Hay 1995. Inducible degradation of IκBα in vitro and in vivo requires the acidic C-terminal domain of the protein. Mol. Cell. Biol. 15:2413–2419.
  • Rodriguez, M. S., J. Wright, J. Thompson, D. Thomas, F. Baleux, J. L. Virelizier, R. T. Hay, and J. Arenzana-Seisdedos 1996. Identification of lysine residues for signal-induced ubiquitination and degradation of IκBα in vivo. Oncogene 12:2425–2435.
  • Rohlff, C., S. Ahmad, F. Borellini, J. Lei, and J. Glazer 1997. Modulation of transcription factor Sp1 by cAMP-dependent protein kinase. J. Biol. Chem. 272:21137–21141.
  • Roulston, A., R. Lin, P. Beauparlant, M. A. Wainberg, and J. Hiscott 1995. Regulation of human immunodeficiency virus type 1 and cytokine gene expression in myeloid cells by NF-κB/Rel transcription factors. Microbiol. Rev. 59:481–505.
  • Sachdev, S., A. Hoffmann, and J. Hannink 1998. Nuclear localization of IκBα is mediated by the second ankyrin repeat: the IκBα ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol. Cell. Biol. 18:2524–2534.
  • Sanceau, J., T. Kaisho, T. Hirano, and J. Wietzerbin 1995. Triggering of the human interleukin-6 gene by interferon-gamma and tumor necrosis factor-alpha in monocytic cells involves cooperation between interferon regulatory factor-1, NF- kappa B, and Sp1 transcription factors. J. Biol. Chem. 17:27920–27931.
  • Scherer, D. C., J. A. Brockman, Z. Chen, T. Maniatis, and J. Ballard 1995. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263.
  • Scott, M. L., T. Fujita, H.-C. Liou, G. P. Nolan, and J. Baltimore 1993. The p65 subunit of NF-κB regulates IκB by two distinct mechanisms. Genes Dev. 7:1266–1276.
  • Sun, S.-C., P. A. Ganchi, D. W. Ballard, and J. Greene 1993. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259:1912–1915.
  • Thompson, J. E., R. J. Phillips, H. Erdjument-Bromage, P. Tempst, and J. Ghosh 1995. IκB-β regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573–582.
  • Traenckner, E. B., H. L. Phal, T. Henkel, N. K. Schmidt, S. Wilk, and J. Baeuerle 1995. Phosphorylation of human IκBα on serines 32 and 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. V. Antwerp, and J. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Whiteside, S. T., J. Epinat, N. R. Rice, and J. Israel 1997. I kappa B epsilon, a novel member of the IκB family, controls RelA and cRel NF-κB activity. EMBO J. 16:1413–1426.
  • Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and J. Karin 1997. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91:243–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.