35
Views
64
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

MCM Proteins Are Associated with RNA Polymerase II Holoenzyme

, , , , , , & show all
Pages 6154-6163 | Received 20 Apr 1999, Accepted 01 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Anderson, S. F., B. P. Schlegel, T. Nakajima, E. S. Wolpin, and J. Parvin 1998. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat. Genet. 19:254–256.
  • Aparicio, O., O. Weinstein, and J. Bell 1997. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and cdc45 during S phase. Cell 91:59–69.
  • Bentley, D. L., W. L. Brown, and J. Groudine 1989. Accurate, TATA box-dependent polymerase III transcription from promoters of the c-myc gene in injected Xenopus oocytes. Genes Dev. 3:1179–1189.
  • Blow, J. J., and J. Laskey 1988. A role for the nuclear envelope in controlling DNA replication within the cell cycle. Nature 332:546–548.
  • Burkhart, R., D. Schulte, D. Hu, C. Musahl, F. Goehring, and J. Knippers 1995. Interactions of human nuclear proteins P1Mcm3 and P1Cdc46. Eur. J. Biochem. 228:431–438.
  • Carlson, M. 1997. Genetics of transcriptional regulation in yeast: connections to the RNA polymerase II CTD. Annu. Rev. Cell. Dev. Biol. 13:1–23.
  • Chang, M., and J. Jaehning 1997. A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res. 25:4861–4865.
  • Cilli, K., and D. Bentley. Unpublished data.
  • Coue, M., S. Kearsey, and J. Mechali 1996. Chromatin binding, nuclear localization and phosphorylation of Xenopus cdc21 are cell-cycle dependent and associated with the control of initiation of DNA replication. EMBO J. 15:1085–1097.
  • DePamphilis, M. L. 1988. Transcriptional elements as components of eukaryotic origins of DNA replication. Cell 52:635–638.
  • Donovan, S., J. Harwood, L. S. Drury, and J. Diffley 1997. Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc. Natl. Acad. Sci. USA 94:5611–5616.
  • Emerman, M., M. Guyader, L. Montagnier, D. Baltimore, and J. Muesing 1987. The specificity of the human immunodeficiency virus type 2 transactivator is different from that of human immunodeficiency virus type 1. EMBO J. 6:3755–3760.
  • Evan, G., G. Lewis, G. Ramsay, and J. Bishop 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616.
  • Fischer, L., M. Gerard, C. Chalut, Y. Lutz, S. Humbert, M. Kanno, P. Chambon, and J. Egly 1992. Cloning of the 62-kilodalton component of basic transcription factor btf2. Science 257:1392–1395.
  • Giniger, E., and J. Ptashne 1987. Transcription in yeast activated by a putative amphipathic alpha helix linked to a DNA binding unit. Nature 330:670–672.
  • Gold, M. O., J. P. Tassan, E. A. Nigg, A. P. Rice, and J. Herrmann 1996. Viral transactivators e1a and vp16 interact with a large complex that is associated with ctd kinase-activity and contains cdk8. Nucleic Acids Res. 24:3771–3777.
  • Gurdon, J. B., and J. Melton 1981. Gene transfer in amphibian eggs and oocytes. Annu. Rev. Genet. 15:189–218.
  • Hampsey, M. 1998. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62:465–503.
  • Han, S. J., Y. C. Lee, B. S. Gim, G.-H. Ryu, S. J. Park, W. S. Lane, and J. Kim 1999. Activator-specific requirement of yeast mediator proteins for RNA polymerase II transcriptional activation. Mol. Cell. Biol. 19:979–988.
  • He, Z. G., B. T. Brinton, J. Greenblatt, J. A. Hassell, and J. Ingles 1993. The transactivator protein VP16 and protein Gal4 bind replication factor A. Cell 73:1223–1232.
  • Hengartner, C. J., C. M. Thompson, J. Zhang, D. M. Chao, S. M. Liao, A. J. Koleske, S. Okamura, and J. Young 1995. Association of an activator with an RNA polymerase II holoenzyme. Genes Dev. 9:897–910.
  • Hu, Y. F., Z. L. Hao, and J. Li 1999. Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. Genes Dev. 13:637–642.
  • Ishimi, Y., Y. Komamura, Z. You, and J. Kimura 1988. Biochemical function of mouse minichromosome maintenance 2 protein. J. Biol. Chem. 273:8369–8375.
  • Ishimi, Y. 1997. A DNA helicase activity is associated with an MCM4, -6 and -7 complex. J. Biol. Chem. 272:24508–24513.
  • Ishimi, Y., S. Ichinose, A. Omori, K. Sato, and J. Kimura 1996. MCM protein complex is associated with Histone H3. J. Biol. Chem. 271:24115–24122.
  • Kearsey, S. E., and J. Labib 1998. MCM proteins: evolution, properties, and role in DNA replication. Biochim. Biophys. Acta 1398:113–136.
  • Kenny, M. K., U. Schlegel, H. Furneaux, and J. Hurwitz 1990. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem. 265:7693–7700.
  • Kim, Y. J., S. Bjorklund, Y. Li, M. H. Sayre, and J. Kornberg 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Koleske, A. J., and J. Young 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Koonin, E. V. 1993. A common set of conserved motifs in a vast variety of putative nucleic acid-dependent ATPases including MCM proteins involved in the initiation of eukaryotic DNA replication. Nucleic Acids Res. 21:2541–2547.
  • Kubota, Y., S. Mimura, S. Nishimoto, T. Masuda, H. Nojima, and J. Takisawa 1997. Licensing of DNA replication by a multi-protein complex of MCM/P1 proteins in Xenopus eggs. EMBO J. 16:3320–3331.
  • Lai, J. S., and J. Herr 1992. Ethidium bromide provides a simple tool for identifying genuine DNA-independent protein associations. Proc. Natl. Acad. Sci. USA 89:6958–6962.
  • Li, R., and J. Botchan 1993. The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV1 DNA replication. Cell 73:1207–1221.
  • Li, R., D. S. Yu, M. Tanaka, L. Zheng, S. L. Berger, and J. Stillman 1998. Activation of chromosomal DNA replication in Saccharomyces cerevisiae by acidic transcriptional activation domains. Mol. Cell. Biol. 18:1296–1302.
  • Li, Y., S. Bjorklund, Y. W. Jiang, Y. J. Kim, W. S. Lane, D. J. Stillman, and J. Kornberg 1995. Yeast global transcriptional regulators Sin4 and Rgr1 are components of mediator complex/RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 92:10864–10868.
  • Liang, C., and J. Stillman 1997. Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants. Genes Dev. 11:3375–3386.
  • Madine, M. A., C. Y. Khoo, A. D. Mills, and J. Laskey 1995. MCM3 complex required for cell cycle regulation of DNA replication in vertebrate cells. Nature 375:421–424.
  • Maine, G., P. Sinha, and J. Tye 1984. Mutants of S. cerevisiae defective in the maintenance of minichromosomes. Genetics 106:365–385.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. Anderson, S. Linn, and J. Reinberg 1996. A human RNA polymerase II associated complex with SRB and DNA-repair proteins. Nature 381:86–89.
  • Marahrens, Y., and J. Stillman 1992. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science 255:817–823.
  • McCracken, S., N. Fong, K. Yankulov, S. Ballantyne, G. H. Pan, J. Greenblatt, S. D. Patterson, M. Wickens, and J. Bentley 1997. The C-terminal domain of RNA polymerase II couples messenger RNA processing to transcription. Nature 385:357–361.
  • McCracken, S., N. Fong, E. Rosonina, K. Yankulov, G. Brothers, D. Siderovski, A. Hessel, S. Foster, S. Shuman, and J. Bentley 1997. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:3306–3318.
  • Myers, L. C., C. M. Gustafson, D. A. Bushnell, M. Lui, H. Erdjument-Bromage, P. Tempst, and J. Kornberg 1998. The Med proteins of yeast and their function through the RNA polymerase II carboxy-terminal domain. Genes Dev. 12:45–54.
  • Myers, L. C., C. M. Gustafson, K. C. Hayashibara, P. O. Brown, and J. Kornberg 1999. Mediator protein mutations that selectively abolish activated transcription. Proc. Natl. Acad. Sci. USA 96:67–72.
  • Newlon, C. S. 1997. Putting it all together: building a prereplicative complex. Cell 91:717–720.
  • Orphanides, G., T. Lagrange, and J. Reinberg 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10:2657–2683.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and J. Schibler 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Pan, G., T. Aso, and J. Greenblatt 1997. Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J. Biol. Chem. 272:24563–24571.
  • Richter, A., and J. Knippers 1997. High molecular mass complexes of human minichromosome maintenance proteins in mitotic cells. Eur. J. Biochem. 247:136–141.
  • Romanowski, P., M. A. Madine, and J. Laskey 1996. XMCM7, a novel member of the Xenopus MCM family, interacts with XMCM3 and colocalizes with it throughout replication. Proc. Natl. Acad. Sci. USA 93:10189–10194.
  • Romanowski, P., M. A. Madine, A. Rowles, J. J. Blow, and J. Laskey 1996. The Xenopus origin recognition complex is essential for DNA replication and MCM binding to chromatin. Curr. Biol. 6:1416–1425.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J. P. Tassan, L. Schaeffer, E. A. Nigg, J. Hoeijmakers, and J. Egly 1994. The MO15 cell-cycle kinase is associated with the TFIIH transcription DNA-repair factor. Cell 79:1093–1101.
  • Scully, R., S. F. Anderson, D. M. Chao, W. Wei, L. Ye, R. A. Young, D. M. Livingston, and J. Parvin 1997. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 94:5605–5610.
  • Tanaka, T., D. Knapp, and J. Nasmyth 1997. Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90:649–660.
  • Thoemmes, P., Y. Kubota, H. Takisawa, and J. Blow 1997. The RLF-M component of the replication licensing system forms complexes containing all six MCM/P1 polypeptides. EMBO J. 16:3312–3319.
  • Thompson, C. M., A. J. Koleske, D. M. Chao, and J. Young 1993. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell 73:1361–1375.
  • Thompson, C. M., and J. Young 1995. General requirement for RNA polymerase II holoenzymes in vivo. Proc. Natl. Acad. Sci. USA 92:4587–4590.
  • Thompson, N., D. Aronson, and J. Burgess 1990. Purification of eukaryotic RNA polymerase II by immunoaffinity chromatography. J. Biol. Chem. 265:7069–7077.
  • Todorov, I. T., A. Attaran, and J. Kearsey 1995. BM28, a human member of the MCM2-3-5 family, is displaced from chromatin during DNA replication. J. Cell Biol. 129:1433–1445.
  • Todorov, I. T., R. Pepperkok, R. N. Philipova, S. E. Kearsey, W. Ansorge, and J. Werner 1994. A human nuclear protein with sequence homology to a family of early S phase proteins is required for entry into S phase and for cell division. J. Cell Sci. 107:253–265.
  • Usheva, A., E. Maldonado, A. Goldring, H. Lu, C. Houbavi, D. Reinberg, and J. Aloni 1992. Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Cell 69:871–881.
  • Wang, Z., T. Luo, and J. Roeder 1997. Identification of an autonomously initiating RNA polymerase III holoenzyme containing a novel factor that is selectively inactivated during protein synthesis inhibition. Genes Dev. 11:2371–2382.
  • West, M., and J. Corden 1995. Construction and analysis of yeast RNA polymerase II CTD deletion and substitution mutations. Genetics 140:1223–1233.
  • Wilson, C. J., D. M. Chao, A. N. Imbalzano, G. R. Schnitzler, R. E. Kingston, and J. Young 1996. Rna polymerase II holoenzyme contains Swi/Snf regulators involved in chromatin remodeling. Cell 84:235–244.
  • Wyllie, A. H., R. Laskey, J. Finch, and J. Gurdon 1978. Selective DNA conservation and chromatin assembly after injection of SV40 DNA into Xenopus oocytes. Dev. Biol. 64:178–188.
  • Yankulov, K., J. Blau, T. Purton, S. Roberts, and J. Bentley 1994. Transcriptional elongation by RNA polymerase II is stimulated by transactivators. Cell 77:749–759.
  • Yankulov, K. Y., M. Pandes, S. McCracken, D. Bouchard, and J. Bentley 1996. TFIIH functions in regulating transcriptional elongation by RNA polymerase II in Xenopus oocytes. Mol. Cell. Biol. 16:3291–3299.
  • Young, M. A., and J. Tye 1997. MCM2 and MCM3 are constitutive nuclear proteins that exhibit distinct isoforms and bind chromatin during specific cell cycle stages of Saccharomyces cerevisiae. Mol. Cell Biol. 17:1587–1601.
  • Zhang, J. J., Y. Zhao, B. T. Chait, W. W. Lathem, M. Ritzi, R. Knippers, and J. Darnell 1998. Ser727-dependent recruitment of MCM5 by stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J. 17:6963–6971.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.