25
Views
179
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Multiple Signal Input and Output Domains of the 160-Kilodalton Nuclear Receptor Coactivator Proteins

, , , , , , & show all
Pages 6164-6173 | Received 10 May 1999, Accepted 08 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Anzick, S. L., J. Kononen, R. L. Walker, D. O. Azorsa, M. M. Tanner, X.-Y. Guan, G. Sauter, O.-P. Kallioniemi, J. M. Trent, and J. Meltzer 1997. AIB1, a steroid receptor coactivator amplified in breast and ovarian cancer. Science 277:965–968.
  • Beato, M., P. Herrlich, and J. Schütz 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857.
  • Blackwood, E. M., and J. Kadonaga 1998. Going the distance: a current view of enhancer action. Science 281:60–63.
  • Brinkmann, A. O., P. W. Faber, H. C. J. van Rooij, G. G. J. M. Kuiper, C. Ris, P. Klaassen, J. A. G. M. van der Korput, M. M. Voorhorst, J. H. van Laar, E. Mulder, and J. Trapman 1989. The human androgen receptor: domain structure, genomic organization and regulation of expression. J. Steroid Biochem. Mol. Biol. 34:307–310.
  • Chamberlain, N. L., E. D. Driver, and J. Miesfeld 1994. The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res. 22:3181–3186.
  • Chen, D., H. Ma, H. Hong, S. S. Koh, S.-M. Huang, B. T. Schurter, D. W. Aswad, and J. Stallcup 1999. Regulation of transcription by a protein methyltransferase. Science 284:2174–2177.
  • Chen, H., R. J. Lin, R. L. Schiltz, D. Chakravarti, A. Nash, L. Nagy, M. L. Privalsky, Y. Nakatani, and J. Evans 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580.
  • Danielian, P. S., R. White, J. A. Lees, and J. Parker 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025–1033.
  • Darimont, B. D., R. L. Wagner, J. W. Apriletti, M. R. Stallcup, P. J. Kushner, J. D. Baxter, R. J. Fletterick, and J. Yamamoto 1998. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12:3343–3356.
  • Ding, X. F., C. M. Anderson, H. Ma, H. Hong, R. M. Uht, P. J. Kushner, and J. Stallcup 1998. Nuclear receptor-binding sites of coactivators glucocorticoid receptor interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs with different binding specificities. Mol. Endocrinol. 12:302–313.
  • Doesburg, P., C. W. Kuil, C. A. Berrevoets, K. Steketee, P. W. Faber, E. Mulder, A. O. Brinkmann, and J. Trapman 1997. Functional in vivo interaction between the amino-terminal, transactivation domain and the ligand binding domain of the androgen receptor. Biochemistry 36:1052–1064.
  • Durand, B., M. Saunders, C. Gaudon, B. Roy, R. Losson, and J. Chambon 1994. Activation function 2 (AF-2) of retinoic acid receptor and 9-cis-retinoic acid receptor: presence of a conserved autonomous constitutive activating domain and influence of the nature of the response element on AF-2 activity. EMBO J. 13:5370–5382.
  • Enmark, E., and J. Gustafsson 1996. Orphan nuclear receptors—the first eight years. Mol. Endocrinol. 10:1293–1307.
  • Evans, R. M. 1988. The steroid and thyroid hormone receptor superfamily. Science 240:889–895.
  • Feng, W., R. C. J. Ribeiro, R. L. Wagner, H. Nguyen, J. W. Apriletti, R. J. Fletterick, J. D. Baxter, P. J. Kushner, and J. West 1998. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749.
  • Gluzman, Y. 1981. SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182.
  • Greenberg, N. M., F. J. DeMayo, P. C. Sheppard, R. Barrios, R. Lebovitz, M. Finegold, R. Angelopoulou, J. G. Dodd, M. L. Duckworth, J. M. Rosen, and J. Matusik 1994. The rat probasin gene promoter directs hormonally and developmentally regulated expression of a heterologous gene specifically to the prostate in transgenic mice. Mol. Endocrinol. 8:230–239.
  • Gu, W., and J. Roeder 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.
  • Guarente, L. 1995. Transcriptional coactivators in yeast and beyond. Trends Biochem. Sci. 20:517–521.
  • Hadzic, E., V. Desai-Yajnik, E. Helmer, S. Guo, S. Wu, N. Koudinova, J. Casanova, B. M. Raaka, and J. Samuels 1995. A 10-amino-acid sequence in the N-terminal A/B domain of thyroid hormone receptor alpha is essential for transcriptional activation and interaction with the general transcription factor TFIIB. Mol. Cell. Biol. 15:4507–4517.
  • Heery, D. M., E. Kalkhoven, S. Hoare, and J. Parker 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736.
  • Hollenberg, S. M., and J. Evans 1988. Multiple and cooperative transactivation domains of the human glucocorticoid receptor. Cell 55:899–906.
  • Hong, H., K. Kohli, A. Trivedi, D. L. Johnson, and J. Stallcup 1996. GRIP1, a novel mouse protein that serves as a transcriptional co-activator in yeast for the hormone binding domains of steroid receptors. Proc. Natl. Acad. Sci. USA 93:4948–4952.
  • Hong, H., K. Kohli, M. J. Garabedian, and J. Stallcup 1997. GRIP1, a transcriptional coactivator for the AF-2 transactivation domain of steroid, thyroid, retinoid, and vitamin D receptors. Mol. Cell. Biol. 17:2735–2744.
  • Hong, H., B. D. Darimont, H. Ma, L. Yang, K. R. Yamamoto, and J. Stallcup 1999. An additional region of coactivator GRIP1 required for interaction with the hormone-binding domains of a subset of nuclear receptors. J. Biol. Chem. 274:3496–3502.
  • Horwitz, K. B., T. A. Jackson, D. L. Bain, J. K. Richer, G. S. Takimoto, and J. Tung 1996. Nuclear receptor coactivators and corepressors. Mol. Endocrinol. 10:1167–1177.
  • Ikonen, T., J. J. Palvimo, and J. Jänne 1997. Interaction between the amino- and carboxy-terminal regions of the rat androgen receptor modulates transcriptional activity and is influenced by nuclear receptor coactivators. J. Biol. Chem. 272:29821–29828.
  • Imhof, A., X.-J. Yang, V. V. Ogryzko, Y. Nakatani, A. P. Wolffe, and J. Ge 1997. Acetylation of general transcription factors by histone acetyltransferases. Curr. Biol. 7:689–692.
  • Jenster, G., H. A. G. M. van der Korput, C. van Vroonhoven, T. H. van der Kwast, J. Trapman, and J. Brinkmann 1991. Domains of the human androgen receptor involved in steroid binding, transcriptional activation, and subcellular localization. Mol. Endocrinol. 5:1396–1404.
  • Kalkhoven, E., J. E. Valentine, D. M. Heery, and J. Parker 1998. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243.
  • Korzus, E., J. Torchia, D. W. Rose, L. Xu, R. Kurokawa, E. M. McInerney, T.-M. Mullen, C. K. Glass, and J. Rosenfeld 1998. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 279:703–707.
  • Kumar, V., S. Green, G. Stack, M. Berry, J.-R. Jin, and J. Chambon 1987. Functional domains of the human estrogen receptor. Cell 51:941–951.
  • Langley, E., Z. X. Zhou, and J. Wilson 1995. Evidence for an anti-parallel orientation of the ligand-activated human androgen receptor dimer. J. Biol. Chem. 270:29983–29990.
  • Lees, J. A., S. E. Fawell, and J. Parker 1989. Identification of two transactivation domains in the mouse oestrogen receptor. Nucleic Acids Res. 17:5477–5489.
  • Luger, K., A. W. Mäder, R. K. Richmond, D. F. Sargent, and J. Richmond 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260.
  • Luger, K., and J. Richmond 1998. The histone tails of the nucleosome. Curr. Opin. Genet. Dev. 8:140–146.
  • Ma, W.-J., R. W. Holz, and J. Uhler 1992. Expression of a cDNA for a neuronal calcium channel α1 subunit enhances secretion from adrenal chromaffin cells. J. Biol. Chem. 267:22728–22732.
  • Mangelsdorf, D. J., and J. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • McDonnell, D. P., D. L. Clemm, T. Hermann, M. E. Goldman, and J. Pike 1995. Analysis of estrogen receptor function in vitro reveals three distinct classes of antiestrogens. Mol. Endocrinol. 9:659–669.
  • McInerney, E. M., D. W. Rose, S. E. Flynn, S. Westin, T. M. Mullen, A. Krones, J. Inostroza, J. Torchia, R. T. Nolte, N. Assa-Munt, M. V. Milburn, C. K. Glass, and J. Rosenfeld 1998. Determinants of coactivator LXXLL motif specificity in nuclear receptor transcriptional activation. Genes Dev. 12:3357–3368.
  • Nolte, R. T., G. B. Wisely, S. Westin, J. E. Cobb, M. H. Lambert, R. Kurokawa, M. G. Rosenfeld, T. M. Willson, C. K. Glass, and J. Milburn 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143.
  • Ogryzko, V. V., R. L. Schiltz, V. Russanova, B. H. Howard, and J. Nakatani 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959.
  • Oñate, S. A., V. Boonyaratanakornkit, T. E. Spencer, S. Y. Tsai, M.-J. Tsai, D. P. Edwards, and J. O’Malley 1998. The steroid receptor coactivator-1 contains multiple receptor interacting and activation domains that cooperatively enhance the activation function 1 (AF1) and AF2 domains of steroid receptors. J. Biol. Chem. 273:12101–12108.
  • Rennie, P. S., N. Bruchovsky, K. J. Leco, P. C. Sheppard, S. A. McQueen, H. Cheng, R. Snoek, A. Hamel, M. E. Bock, B. S. MacDonald, B. E. Nickel, C. Chang, S. Liao, P. A. Cattini, and J. Matusik 1993. Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol. Endocrinol. 7:23–36.
  • Sambrook, J., E. F. Fritsch, T. Maniatis 1989. Molecular cloning: a laboratory manual, p. 18–38. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Spencer, T. E., G. Jenster, M. M. Burcin, C. D. Allis, J. Zhou, C. A. Mizzen, N. J. McKenna, S. A. Oñate, S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198.
  • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606.
  • Struhl, K., and J. Moqtaderi 1998. The TAFs in the HAT. Cell 94:1–4.
  • Swope, D. L., C. L. Mueller, and J. Chrivia 1996. CREB-binding protein activates transcription through multiple domains. J. Biol. Chem. 271:28138–28145.
  • Torchia, J., D. W. Rose, J. Inostroza, Y. Kamei, S. Westin, C. K. Glass, and J. Rosenfeld 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684.
  • Torchia, J., C. Glass, and J. Rosenfeld 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383.
  • Tsai, M.-J., and J. O’Malley 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486.
  • Tzukerman, M. T., A. Esty, D. Santiso-Mere, P. Danielian, M. G. Parker, R. B. Stein, J. W. Pike, and J. McDonnell 1994. Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol. Endocrinol. 8:21–30.
  • Umesono, K., and J. Evans 1989. Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146.
  • Voegel, J. J., M. J. S. Heine, M. Tini, V. Vivat, P. Chambon, and J. Gronemeyer 1998. The coactivator TIF2 contains three nuclear receptor binding motifs and mediates transactivation through CBP binding-dependent and -independent pathways. EMBO J. 17:507–519.
  • Walfish, P. G., T. Yoganathan, Y.-F. Yang, H. Hong, T. R. Butt, and J. Stallcup 1997. Yeast hormone response element assays detect and characterize GRIP1 coactivator-dependent activation of transcription by thyroid and retinoid nuclear receptors. Proc. Natl. Acad. Sci. USA 94:3697–3702.
  • Webb, P., P. Nguyen, J. Shinsako, C. Anderson, W. Feng, M. P. Nguyen, D. Chen, S.-M. Huang, S. Subramanian, E. McKinerney, B. S. Katzenellenbogen, M. R. Stallcup, and J. Kushner 1998. Estrogen receptor activation function 1 works by binding p160 coactivator proteins. Mol. Endocrinol. 12:1605–1618.
  • Wurtz, J.-M., W. Bourguet, J.-P. Renaud, V. Vivat, P. Chambon, D. Moras, and J. Gronemeyer 1996. A canonical structure for the ligand-binding domain of nuclear receptors. Nat. Struct. Biol. 3:87–94.
  • Yao, T.-P., G. Ku, N. Zhou, R. Scully, and J. Livingston 1996. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93:10626–10631.
  • Zhang, S., and J. Danielsen 1995. Selective effects of 8-Br-cAMP on agonists and antagonists of the glucocorticoid receptor. Endocrine 3:5–12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.