43
Views
287
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Antiapoptotic Gene mcl-1 Is Up-Regulated by the Phosphatidylinositol 3-Kinase/Akt Signaling Pathway through a Transcription Factor Complex Containing CREB

, , , , &
Pages 6195-6206 | Received 16 Feb 1999, Accepted 21 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Ahmed, N. N., H. L. Grimes, A. Bellacosa, T. O. Chan, and J. Tsichlis 1997. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94:3627–3632.
  • Andjelkovic, M., D. R. Alessi, R. Meier, A. Fernanadez, N. J. Lamb, M. Frech, P. Cron, P. Cohen, J. M. Lucocq, and J. Hemmings 1997. Role of translocation in the activation and function of protein kinase B. J. Biol. Chem. 272:31515–31524.
  • Angel, P., M. Imagawa, R. Chiu, B. Stein, R. J. Imbra, H. J. Rahmsdorf, C. Jonat, P. Herrlich, and J. Karin 1987. Phorbol ester-inducible genes contain a common cis element recognized by a TPA-modulated trans-acting factor. Cell 49:729–739.
  • Arai, K., F. Lee, A. Miyajima, N. Arai, and J. Yokota 1990. Cytokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59:783–836.
  • Azam, M., H. Erdjument-Bromage, B. L. Kreider, M. Xia, F. Quelle, R. Basu, C. Saris, P. Tempst, J. N. Ihle, and J. Schindler 1995. Interleukin-3 signals through multiple isoforms of Stat5. EMBO J. 14:1402–1411.
  • Burgering, B. M. T., and J. Coffer 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602.
  • Chao, J.-R., J.-M. Wang, S.-F. Lee, H.-W. Peng, Y.-H. Lin, C.-H. Chou, J.-C. Li, H.-M. Huang, C.-K. Chou, M.-L. Kuo, J. J.-Y. Yen, and J. Yang-Yen 1998. mcl-1 is an immediate-early gene activated by the granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling pathway and is one component of the GM-CSF viability response. Mol. Cell. Biol. 18:4883–4898.
  • Comb, M., N. Mermod, S. E. Hyman, J. Pearlberg, M. E. Ross, and J. Goodman 1988. Proteins bound at adjacent DNA elements act synergistically to regulate human proenkephalin cAMP inducible transcription. EMBO J. 7:3793–3805.
  • Conscience, J. F., B. Verrier, and J. Martin 1986. Interleukin-3-dependent expression of the c-myc and c-fos proto-oncogenes in hemopoietic cell lines. EMBO J. 5:317–323.
  • Corey, S., A. Eguinoa, K. Puyana-Theall, J. B. Bolen, L. Cantley, F. Mollinedo, T. R. Jackson, P. T. Hawkins, and J. Stephens 1993. Granulocyte macrophage-colony stimulating factor stimulates both association and activation of phosphoinositide 3-OH-kinase and src-related tyrosine kinase(s) in human myeloid derived cells. EMBO J. 12:2681–2690.
  • Cross, D. A., D. R. Alessi, P. Cohen, M. Andjelkovich, and J. Hemmings 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789.
  • Datta, S. R., H. Dudek, X. Tao, S. Masters, H. Fu, Y. Gotoh, and J. Greenberg 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241.
  • Del Peso, L., M. Gonzalez-Garcia, C. Page, R. Herrera, and J. Nunez 1997. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689.
  • Dignam, J., R. Lebovitz, and J. Roeder 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Du, K., and J. Montminy 1998. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273:32377–32379.
  • Dudek, H., S. R. Datta, T. F. Franke, M. J. Birnbaum, R. Yao, G. M. Cooper, R. A. Segal, D. R. Kaplan, and J. Greenberg 1997. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665.
  • Duronio, V., I. Clark-Lewis, B. Federsppiel, J. S. Wieler, and J. Schrader 1992. Tyrosine phosphorylation of receptor beta subunits and common substrates in response to interleukin-3 and granulocyte-macrophage colony-stimulating factor. J. Biol. Chem. 267:21856–21863.
  • Eves, E. M., W. Xiong, A. Bellacosa, S. G. Kennedy, P. N. Tsichlis, M. R. Rosner, and J. Hay 1998. Akt, a target of phosphatidylinositol 3-kinase, inhibits apoptosis in a differentiating neuronal cell line. Mol. Cell. Biol. 18:2143–2152.
  • Franke, T. F., S. I. Yang, T. O. Chan, K. Datta, A. Kazlauskas, D. K. Morrison, D. R. Kaplan, and J. Tsichlis 1995. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736.
  • Gold, M. R., V. Duronio, S. P. Saxena, J. W. Schrader, and J. Aebersold 1994. Multiple cytokines activate phosphatidylinositol 3-kinase in hemopoietic cells. Association of the enzyme with various tyrosine-phosphorylated proteins. J. Biol. Chem. 269:5403–5412.
  • Hai, T., and J. Curran 1991. Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc. Natl. Acad. Sci. USA 88:3720–3724.
  • Hanazono, Y., S. Chiba, K. Sasaki, H. Mano, A. Miyajima, K. Arai, Y. Yazaki, and J. Hirai 1993. c-fps/fes protein-tyrosine kinase is implicated in a signaling pathway triggered by granulocyte-macrophage colony-stimulating factor and interleukin-3. EMBO J. 12:1641–1646.
  • Hara, K., K. Yonezawa, H. Sakaue, A. Ando, K. Kotani, T. Kitamura, Y. Kitamura, H. Ueda, L. Stephens, T. R. Jackson, P. T. Hawkins, R. Dhand, A. E. Clark, G. D. Holman, M. D. Waterfield, and J. Kasuga 1994. Phosphatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for RAS activation in CHO cells. Proc. Natl. Acad. Sci. USA 91:7415–7419.
  • Hsueh, Y. P., and J. Lai 1995. Overexpression of activation transcriptional factor 1 in lymphomas and in activated lymphocytes. J. Immunol. 154:5675–5683.
  • Hyman, S. E., M. Comb, Y.-S. Lin, J. Pearlberg, M. R. Green, and J. Goodman 1988. A common trans-acting factor is involved in transcriptional regulation of neurotransmitter genes by cyclic AMP. Mol. Cell. Biol. 8:4225–4233.
  • Kauffmann-Zeh, A., P. Rodriguez-Viciana, E. Ulrich, C. Gilbert, P. Coffer, J. Downward, and J. Evan 1997. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385:544–548.
  • Kennedy, S. G., A. J. Wagner, S. D. Conzen, J. Jordan, A. Bellacosa, P. N. Tsichlis, and J. Hay 1997. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 11:701–713.
  • Khwaja, A., P. Rodriguez-Viciana, S. Wennstrom, P. H. Warne, and J. Downward 1997. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16:2783–2793.
  • Kinoshita, T., T. Yokota, K. Arai, and J. Miyajima 1995. Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. EMBO J. 14:266–275.
  • Kitamura, T., T. Tange, T. Terasawa, S. Chiba, T. Kuwaki, K. Miyagawa, Y. F. Piao, K. Miyazono, A. Urabe, and J. Takaku 1989. Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3, or erythropoietin. J. Cell. Physiol. 140:323–334.
  • Klippel, A., C. Reinhard, W. M. Kavanaugh, G. Apell, M.-A. Escobedo, and J. Williams 1996. Membrane localization of phosphatidylinositol 3-kinase is sufficient to activate multiple signal-transducing kinase pathways. Mol. Cell. Biol. 16:4117–4127.
  • Kohn, A. D., K. S. Kovacina, and J. Roth 1995. Insulin stimulates the kinase activity of RAC-PK, a pleckstrin homology domain containing ser/thr kinase. EMBO J. 14:4288–4295.
  • Kozopas, K. M., T. Yang, H. L. Buchan, P. Zhou, and J. Craig 1993. Mcl-1, a gene expressed in programmed myeloid cell differentiation has sequence similarity to Bcl2. Proc. Natl. Acad. Sci. USA 90:3516–3520.
  • Kulik, G., A. Klippel, and J. Weber 1997. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol. Cell. Biol. 17:1595–1606.
  • Lee, H.-J. J., R. C. Mignacca, and J. Sakamoto 1995. Transcriptional activation of egr-1 by granulocyte-macrophage colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding protein (CREB) on serine 133. J. Biol. Chem. 270:15979–15983.
  • Lee, K. A., T. Y. Hai, L. SivaRaman, B. Thimmappaya, H. C. Hurst, N. C. Jones, and J. Green 1987. A cellular protein, activating transcription factor, activates transcription of multiple ElA-inducible adenovirus early promoters. Proc. Natl. Acad. Sci. USA 84:8355–8359.
  • Lee, W., P. Mitchell, and J. Tjian 1987. Purified transcription factor AP-1 interacts with TPA-inducible enhancer elements. Cell 49:741–752.
  • Lin, E. Y., A. Orlofsky, M. S. Berger, and J. Prystowsky 1993. Characterization of A1, a novel hemopoietic-specific early-response gene with sequence similarity to bcl-2. J. Immunol. 151:1979–1988.
  • MacArthur, L. 1996. AP-1-related proteins bind to the enkephalin CRE-2 element in adrenal chromaffin cells. J. Neurochem. 67:2256–2264.
  • Meier, R., D. R. Alessi, P. Cron, M. Andjelkovic, and J. Hemmings 1997. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase B beta. J. Biol. Chem. 272:30491–30497.
  • Minshall, C., S. Arkins, G. G. Freund, and J. Kelley 1996. Requirement for phosphatidylinositol 3′-kinase to protect hemopoietic progenitors against apoptosis depends upon the extracellular survival factor. J. Immunol. 156:939–947.
  • Miyajima, A., A. L.-F. Mui, T. Ogorochi, and J. Sakamaki 1993. Receptors for granulocyte-macrophage colony-stimulating factor, interleukin-3 and interleukin-5. Blood 82:1960–1974.
  • Montminy, M. R., K. A. Sevarino, J. A. Wagner, G. Mandel, and J. Goodman 1986. Identification of a cyclic-AMP-responsive element within the rat somatostatin gene. Proc. Natl. Acad. Sci. USA 83:6682–6686.
  • Mui, A. L.-F., H. Wakao, A. M. O’Farrell, N. Harada, and J. Miyajima 1995. Interleukin-3, granulocyte-macrophage colony-stimulating factor and interleukin-5 transduce signals through two STAT5 homologues. EMBO J. 14:1166–1175.
  • Nichols, M., A. Weih, W. Schmid, C. DeVack, E. Kowenz-Leutz, B. Luckow, M. Boshart, and J. Schutz 1992. Phosphorylation of CREB affects its binding to high and low affinity sites: implications for cAMP induced gene. EMBO J. 11:3337–3346.
  • Quelle, F. W., N. Sato, B. A. Witthuhn, R. C. Inhorn, M. Eder, A. Miyajima, J. D. Griffin, and J. Ihle 1994. Jak2 associates with the βc chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol. Cell. Biol. 14:4335–4341.
  • Rajotte, D., H. B. Sadowski, A. Haman, K. Gopalbhai, S. Meloche, L. Liu, G. Krystal, and J. Hoang 1996. Contribution of both STAT and SRF/TCF to c-fos promoter activation by granulocyte-macrophage colony-stimulating factor. Blood 88:2906–2916.
  • Reynolds, J. E., T. Yang, L. Qian, J. D. Jenkinson, P. Zhou, A. Eastman, and J. Craig 1994. Mcl-1, a member of the Bcl-2 family, delays apoptosis induced by c-Myc overexpression in Chinese hamster ovary cells. Cancer Res. 54:6348–6352.
  • Sadowski, H. B., K. Shuai, J. E. Darnell Jr., and J. Gilman 1993. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 261:1739–1744.
  • Sato, N., K. Sakamaki, N. Terada, K. Arai, and J. Miyajima 1993. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 12:4181–4189.
  • Scheid, M. P., R. W. Lauener, and J. Duronio 1995. Role of phosphatidylinositol 3-OH-kinase activity in the inhibition of apoptosis in haemopoietic cells: phosphatidylinositol 3-OH-kinase inhibitors reveal a difference in signalling between interleukin-3 and granulocyte-macrophage colony stimulating factor. Biochem. J. 312:159–162.
  • Scheid, M. P., and J. Duronio 1998. Dissociation of cytokine-induced phosphorylation of Bad and activation of PKB/akt: involvement of MEK upstream of Bad phosphorylation. Proc. Natl. Acad. Sci. USA 95:7439–7444.
  • Silvennoinen, O., B. Witthuhn, F. W. Quelle, J. L. Cleveland, T. Yi, and J. Ihle 1993. Structure of the Jak2 protein tyrosine kinase and its role in IL-3 signal transduction. Proc. Natl. Acad. Sci. USA 90:8429–8433.
  • Skorski, T., A. Bellacosa, M. Nieborowska-Skorska, M. Majewski, R. Martinez, J. K. Choi, R. Trotta, P. Wlodarski, D. Perrotti, T. O. Chan, M. A. Wasik, P. N. Tsichlis, and J. Calabretta 1997. Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J. 16:6151–6161.
  • Songyang, Z., D. Baltimore, L. C. Cantley, D. R. Kaplan, and J. Franke 1997. Interleukin 3-dependent survival by the Akt protein kinase. Proc. Natl. Acad. Sci. USA 94:11345–11350.
  • Wagner, B. J., T. E. Hayes, C. J. Hoban, and J. Cochran 1990. The SIF binding element confers sis/PDGF inducibility onto the c-fos promoter. EMBO J. 9:4477–4484.
  • Wang et al. Unpublished results.
  • Yang, T., K. M. Kozopas, and J. Craig 1995. The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J. Cell Biol. 128:1173–1184.
  • Yang-Yen, H.-F., J.-C. Chambard, Y.-L. Sun, T. Smeal, T. J. Schmidt, J. Drouin, and J. Karin 1990. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62:1205–1215.
  • Yen, J. J.-Y., Y. C. Hsieh, C. L. Yen, C. C. Chang, S. Lin, and J. Yang-Yen 1995. Restoring the apoptosis suppression response to IL-5 confers on erythroleukemic cells a phenotype of IL-5-dependent growth. J. Immunol. 154:2144–2152.
  • Yoshimura, A., T. Ohkubo, T. Kiguchi, N. A. Jenkins, D. J. Gilbert, N. G. Copeland, T. Hara, and J. Miyajima 1995. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors. EMBO J. 14:2816–2826.
  • Zhou, P., L. Qian, K. M. Kozopas, and J. Craig 1997. Mcl-1, a bcl-2 family member, delays the death of hematopoietic cells under a variety of apoptosis-inducing conditions. Blood 89:630–643.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.