30
Views
83
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Grb10, a Positive, Stimulatory Signaling Adapter in Platelet-Derived Growth Factor BB-, Insulin-Like Growth Factor I-, and Insulin-Mediated Mitogenesis

, , , , , , , & show all
Pages 6217-6228 | Received 18 Aug 1998, Accepted 03 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Angrist, M., S. Bolk, K. Bently, S. Nallasamy, M. K. Halushka, and J. Chakravarti 1998. Genomic structure of the gene for the SH2 and pleckstrin homology domain-containing protein GRB10 and evaluation of its role in Hirschsprung disease. Oncogene 17:3065–3070.
  • Bai, R. Y., T. Jahn, S. Schrem, G. Munzert, K. M. Weidner, J. Y. J. Wang, and J. Duyster 1998. The SH2-containing adapter protein Grb10 interacts with BCR-ABL. Oncogene 17:941–948.
  • Blakesley, V. A., A. Scrimgeour, D. Esposito, and J. LeRoith 1996. Signaling via the insulin-like growth factor-I receptor: does it differ from insulin receptor signaling? Cytokine Growth Factor Rev. 7:153–159.
  • Brown, S., and J. Friesel 1993. Production of recombinant Xenopus fibroblast growth factor receptor-1 using a baculovirus expression system. Biochem. Biophys. Res. Commun. 193:1116–1122.
  • Daly, R. J. 1998. The Grb7 family of signalling proteins. Cell. Signal. 10:613–618.
  • Daly, R. J., G. M. Sanderson, P. W. Janes, and J. Sutherland 1996. Cloning and characterization of Grb14, a novel member of the Grb7 gene family. J. Biol. Chem. 271:12502–12510.
  • Denizot, F., and J. Lang 1986. Rapid colorimetric assay for cell growth and survival. Modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 89:271–277.
  • Dey, B. R., K. Frick, W. Lopaczynski, S. P. Nissley, and J. Furlanetto 1996. Evidence for the direct interaction of the insulin-like growth factor I receptor with IRS-1, Shc, and Grb10. Mol. Endocrinol. 10:631–641.
  • Dong, L. Q., S. Farris, J. Christal, and J. Liu 1997. Site-directed mutagenesis and yeast two-hybrid studies of the insulin and insulin-like growth factor-1 receptors: the Src homology-2 domain-containing protein hGrb10 binds to the autophosphorylated tyrosine residues in the kinase domain of the insulin receptor. Mol. Endocrinol. 11:1757–1765.
  • Dong, L. Q., H. Du, S. G. Porter, L. F. Kolakowski, A. V. Lee, J. Mandarino, J. Fan, D. Yee, and J. Liu 1997. Cloning, chromosome localization, expression, and characterization of a Src homology 2 and pleckstrin homology domain-containing insulin receptor binding protein hGrb10γ. J. Biol. Chem. 272:29104–29112.
  • Dong, L. Q., S. Porter, D. Hu, and J. Liu 1998. Inhibition of hGrb10 binding to the insulin receptor by functional domain-mediated oligomerization. J. Biol. Chem. 273:17720–17725.
  • Durick, K., R.-Y. Wu, G. N. Gill, and J. Taylor 1996. Mitogenic signaling by Ret/ptc2 requires association with enigma via a LIM domain. J. Biol. Chem. 271:12691–12694.
  • Frantz, J. D., S. Giorgetti-Peraldi, E. A. Ottinger, and J. Shoelson 1997. Human GRB-IR beta/GRB10: splice variants of an insulin and growth factor receptor-binding protein with PH and SH2 domains. J. Biol. Chem. 272:2659–2667.
  • Hansen, H., U. Svensson, J. Zhu, L. Laviola, F. Giorgino, G. Wolf, R. J. Smith, and J. Riedel 1996. Interaction between the Grb10 SH2 domain and the insulin receptor carboxyl terminus. J. Biol. Chem. 271:8882–8886.
  • He, W., D. W. Rose, J. M. Olefsky, and J. Gustafson 1998. Grb10 interacts differentially with the insulin receptor, insulin-like growth factor-I receptor, and epidermal growth factor receptor via the Grb10 Src homology 2 (SH2) domain and a second novel domain located between the pleckstrin homology and SH2 domains. J. Biol. Chem. 273:6860–6867.
  • Hoffman, B., and J. Liebermann 1998. The proto-oncogene c-myc and apoptosis. Oncogene 17:3351–3357.
  • Janes, P. W., M. Lackmann, W. B. Church, G. M. Sanderson, R. L. Sutherland, and J. Daly 1997. Structural determinants of the interaction between the erbB2 receptor and the Src homology 2 domain of Grb7. J. Biol. Chem. 272:8490–8497.
  • Kasus-Jacobi, A., D. Perdereau, C. Auzan, E. Clauser, E. Van Obberghen, F. Mauvais-Jarvis, J. Girard, and J. Burnol 1998. Identification of the rat adapter Grb14 as inhibitor of insulin actions. J. Biol. Chem. 273:26026–26035.
  • Kazlauskas, A., A. Kashishian, J. A. Cooper, and J. Valius 1992. GTPase-activating protein and phosphatidylinositol 3-kinase bind to distinct regions of the platelet-derived growth factor receptor beta subunit. Mol. Cell. Biol. 12:2534–2544.
  • Laviola, L., F. Giorgino, J. C. Chow, J. A. Baquero, H. Hansen, J. Ooi, J. Zhu, H. Riedel, and J. Smith 1997. The adapter protein Grb10 associates preferentially with the insulin receptor as compared to the IGF-1 receptor in mouse fibroblasts. J. Clin. Investig. 99:830–837.
  • Liu, F., and J. Roth 1995. Grb-IR: a SH2 domain-containing protein that binds to the insulin receptor and inhibits its function. Proc. Natl. Acad. Sci. USA 92:10287–10291.
  • Liu, F., and J. Roth 1998. Binding of SH2 containing proteins to the insulin receptor: a new way for modulating insulin signalling. Mol. Cell. Biochem. 182:73–78.
  • Mano, H., K. Ohya, A. Miyazato, Y. Yamashita, W. Ogawa, J. Inazawa, U. Ikeda, K. Shimada, K. Hatake, M. Kasunga, K. Ozawa, and J. Kajigaya 1998. Grb10/GrbIR as an in vivo substrate of Tec tyrosine kinase. Genes Cells 3:431–441.
  • Manser, J., C. Roonprapunt, and J. Margolis 1997. C. elegans cell migration gene mig-10 shares similarities with a family of SH2 domain proteins and acts cell nonautonomously in excretory canal development. Dev. Biol. 184:150–164.
  • Margolis, B. 1994. The GRB family of SH2 domain proteins. Prog. Biophys. Mol. Biol. 62:223–244.
  • Margolis, B., O. Silvennoinen, F. Comoglio, C. Roonprapunt, E. Skolnik, A. Ullrich, and J. Schlessinger 1992. High-efficiency expression cloning of epidermal growth factor-receptor-binding proteins with Src homology 2 domains. Proc. Natl. Acad. Sci. USA 89:8894–8898.
  • Miura, M., S. Li, and J. Baserga 1995. Effect of a mutation at tyrosine 950 of the insulin-like growth factor I receptor on the growth and transformation of cells. Cancer Res. 55:663–667.
  • Miura, M., E. Surmacz, J. L. Burgaud, and J. Baserga 1995. Different effects on mitogenesis and transformation of a mutation at tyrosine 1251 of the insulin-like growth factor I receptor. J. Biol. Chem. 270:22639–22644.
  • Miyoshi, N., Y. Kuroiwa, T. Kohda, H. Shitara, H. Yonekawa, T. Kawabe, H. Hasegawa, S. C. Barton, M. A. Surani, T. Kaneko-Ishino, and J. Ishino 1998. Identification of the Meg1/Grb10 imprinted gene on mouse proximal chromosome 11, a candidate for the Silver-Russel syndrome gene. Proc. Natl. Acad. Sci. USA 95:1102–1107.
  • Morrione, A., B. Valentinis, S. Li, J. Y. T. Ooi, B. Margolis, and J. Baserga 1996. Grb10: a new substrate of the insulin-like growth factor I receptor. Cancer Res. 56:3165–3167.
  • Morrione, A., B. Valentinis, M. Resnicoff, S.-Q. Xu, and J. Baserga 1997. The role of mGrb10a in insulin-like growth factor I-mediated growth. J. Biol. Chem. 272:26382–26387.
  • Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55–63.
  • Moutoussamy, S., F. Renaudie, F. Lago, P. A. Kelly, and J. Finidori 1998. Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J. Biol. Chem. 273:15906–15912.
  • Myers, M. J., J. M. Backer, K. Siddle, and J. White 1991. The insulin receptor functions normally in Chinese hamster ovary cells after truncation of the C-terminus. J. Biol. Chem. 266:10616–10623.
  • Nantel, A., K. Mohammad-Ali, J. Sherk, B. L. Posner, and J. Thomas 1998. Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases. J. Biol. Chem. 273:10475–10484.
  • No, D., T. P. Yao, and J. Evans 1996. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 93:3346–3351.
  • Northrop, J. P., M. J. Pustelnik, A. T. Lu, and J. Grove 1996. Characterization of the roles of SH2 domain-containing proteins in T-lymphocyte activation by using dominant negative SH2 domains. Mol. Cell. Biol. 16:2255–2263.
  • O’Neill, T. J., D. W. Rose, T. S. Pillay, K. Hotta, J. M. Olefsky, and J. Gustafson 1996. Interaction of a GRB-IR splice variant (a human GRB10 homolog) with the insulin and insulin-like growth factor I receptors. J. Biol. Chem. 271:22506–22513.
  • Ooi, J., V. Yajnik, D. Immanuel, M. Gordon, J. J. Moskow, A. M. Buchberg, and J. Margolis 1995. The cloning of Grb10 reveals a new family of SH2 domain proteins. Oncogene 10:1621–1630.
  • Pandey, A., H. Duan, P. P. Di Fiore, and J. Dixit 1995. The Ret receptor protein tyrosine kinase associates with the SH2-containing adapter protein Grb10. J. Biol. Chem. 270:21461–21463.
  • Prochiantz, A. 1996. Getting hydrophilic compounds into cells: lessons from homeopeptides. Curr. Opin. Neurobiol. 6:629–634.
  • Riedel, H., and B. R. Braun. Grb10 in insulin signaling. In G. Grunberger and Y. Zick (ed.), Insulin signaling: from cultured cells to animal models, in press. Harwood Academic Press, Langhorne, Pa.
  • Rodrigues, G. A., and J. Park 1994. Autophosphorylation modulates the kinase activity and oncogenic potential of Met receptor tyrosine kinase. Oncogene 9:2019–2027.
  • Rohn, J. L., A. O. Hueber, N. J. McCarthy, D. Lyon, P. Navarro, B. M. Burgering, and J. Evan 1998. The opposing roles of the Akt and c-Myc signalling pathways in survival from CD95-mediated apoptosis. Oncogene 17:2811–2818.
  • Sasaoka, T., D. W. Rose, B. H. Jhun, A. R. Saltiel, B. Draznin, and J. Olefsky 1994. Evidence for a functional role of Shc proteins in mitogenic signaling induced by insulin, insulin-like growth factor-I, and epidermal growth factor. J. Biol. Chem. 269:13689–13694.
  • Sparks, A. B., J. E. Rider, N. G. Hoffman, D. M. Fowlkes, L. A. Quilliam, and J. Kay 1996. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc. Natl. Acad. Sci. USA 93:1540–1544.
  • Stein, D., J. Wu, S. A. W. Fuqua, C. Roonprapunt, V. Yajnik, P. D’Eustachio, J. J. Moskow, A. M. Buchberg, C. K. Osborne, and J. Margolis 1994. The SH2 domain protein GRB-7 is coamplified, overexpressed and in a tight complex with HER2 in breast cancer. EMBO J. 13:1331–1340.
  • Stein, E., D. P. Cerretti, and J. Daniel 1996. Ligand activation of ELK receptor tyrosine kinase promotes its association with Grb10 and Grb2 in vascular endothelial cells. J. Biol. Chem. 271:23588–23593.
  • Tanaka, S., M. Mori, T. Akiyoshi, Y. Tanaka, K. Mafune, J. R. Wands, and J. Sugimachi 1998. A novel variant of human Grb7 is associated with invasive esophageal carcinoma. J. Clin. Investig. 102:821–827.
  • Ullrich, A., A. Gray, A. W. Tam, T. Yang-Feng, M. Tsubokawa, C. Collins, W. Henzel, T. Le Bon, S. Kathuria, E. Chen, S. Jacobs, U. Francke, J. Ramachandran, and J. Fujita-Yamaguchi 1986. Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J. 5:2503–2512.
  • van der Geer, P., M. Henkemeier, T. Jacks, and J. Pawson 1997. Aberrant Ras regulation and reduced p190 tyrosine phosphorylation in cells lacking p120-Gap. Mol. Cell. Biol. 17:1840–1847.
  • van der Geer, P., T. Hunter, and J. Lindberg 1994. Receptor tyrosine kinases and their signal transduction pathways. Annu. Rev. Cell Biol. 10:251–337.
  • White, M. F., and J. Kahn 1994. The insulin signaling system. J. Biol. Chem. 269:1–4.
  • Williams, E. J., D. J. Dunican, P. J. Green, F. V. Howell, D. Derossi, F. S. Walsh, and J. Doherty 1997. Selective inhibition of growth factor-stimulated mitogenesis by a cell-permeable Grb2-binding peptide. J. Biol. Chem. 272:22349–22354.
  • Yokote, K., B. Margolis, C.-H. Heldin, and J. Claesson-Welsh 1996. Grb7 is a downstream signaling component of platelet-derived growth factor alpha- and beta-receptors. J. Biol. Chem. 271:30942–30949.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.