8
Views
55
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Involvement of DNA End-Binding Protein Ku in Ty Element Retrotransposition

&
Pages 6260-6268 | Received 12 Mar 1999, Accepted 22 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Agrawal, A., Q. M. Eastman, and J. Schatz 1998. Implications of transposition mediated by V(D)J-recombination proteins RAG1 and RAG2 for origins of antigen-specific immunity. Nature 394:744–751.
  • Allen, J. B., and J. Elledge 1994. A family of vectors that facilitate transposon and insertional mutagenesis of cloned genes in yeast. Yeast 10:1267–1272.
  • Barnes, G., and J. Rio 1997. DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:867–872.
  • Beall, E. L., and J. Rio 1996. Drosophila IRBP/Ku p70 corresponds to the mutagen sensitive mus309 gene and is involved in P-element excision in vivo. Genes Dev. 10:921–933.
  • Becker, D. M., and J. Lundblad 1994. Transformation of yeast Current protocols in molecular biology In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), 2:13.7.1–13.7.10 Green Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, N.Y.
  • Boeke, J. D. 1989. Transposable elements in Saccharomyces cerevisiae, p. 335–374. In D. E. Berg, M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
  • Boulton, S. J., and J. Jackson 1996. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 15:5093–5103.
  • Boulton, S. J., and J. Jackson 1998. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. EMBO J. 17:1819–1828.
  • Boulton, S. J., and J. Jackson 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break rejoining and in telomeric maintenance. Nucleic Acids Res. 24:4639–4648.
  • Bradshaw, V. A., and J. McEntee 1989. DNA damage activates transcription and transposition of yeast Ty retrotransposons. Mol. Gen. Genet. 218:465–474.
  • Conte, D., E. Barber, M. Banerjee, D. J. Garfinkel, and J. Curcio 1998. Posttranslational regulation of Ty1 retrotransposition by mitogen-activated protein kinase Fus3. Mol. Cell. Biol. 18:2502–2513.
  • Craig, N. L. 1995. Unity in transposition reactions. Science 270:253–254.
  • Critchlow, S. E., and J. Jackson 1998. DNA end joining: from yeast to man. Trends Biochem. Sci. 23:394–398.
  • Curcio, M. J., and J. Garfinkel 1991. Single-step selection for Ty1 element retrotransposition. Proc. Natl. Acad. Sci. USA 88:936–940.
  • Curcio, M. J., and J. Garfinkel 1999. New lines of host defense: inhibition of Ty1 retrotransposition by Fus3p and NER/TFIIH. Trends Genet. 15:43–45.
  • Daniel, R., R. A. Katz, and J. Shalka 1999. A role for DNA-PK in retroviral DNA integration. Science 284:644–647.
  • Devine, S. E., and J. Boeke 1996. Integration of the yeast retrotransposon Ty1 is targeted to regions upstream of genes transcribed by RNA polymerase III. Genes Dev. 10:620–633.
  • de Vries, E., W. van Driel, W. G. Bergsma, A. C. Arnberg, and J. van der Vliet 1989. HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a regular DNA-multimeric protein complex. J. Mol. Biol. 208:65–78.
  • Dvir, A., S. R. Peterson, M. W. Knuth, H. Lu, and J. Dynan 1992. Ku autoantigen is the regulatory component of a template associated protein kinase that phosphorylates RNA polymerase II. Proc. Natl. Acad. Sci. USA 89:11920–11924.
  • Dynan, W. S., and J. Yoo 1998. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res. 26:1551–1559.
  • Eichinger, D. J., and J. Boeke 1988. The DNA intermediate in yeast Ty1 element transposition copurifies with virus-like particles: cell-free Ty1 transposition. Cell 54:955–966.
  • Eichinger, D. J., and J. Boeke 1990. A specific terminal structure is required for Ty1 transposition. Genes Dev. 4:324–330.
  • Falzon, M., J. W. Fewell, and J. Kuff 1993. EBP-80, a transcription factor closely resembling the human autoantigen Ku, recognizes single- to double-strand transitions in DNA. J. Biol. Chem. 268:10546–10552.
  • Giffen, W., H. Torrance, D. J. Rodda, G. G. Prefontaine, L. Pope, and J. Hache 1996. Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 380:265–268.
  • Gottlieb, T. M., and J. Jackson 1993. The DNA-dependent protein kinase: requirement for DNA ends and association with Ku antigen. Cell 72:131–142.
  • Greenwall, P. W., S. L. Kronmal, S. E. Porter, J. Gassenhuber, B. Obermaier, and J. Petes 1995. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Cell 82:823–829.
  • Hiom, K., M. Melek, and J. Gellert 1998. DNA transposition by the RAG1 and RAG2 proteins: a possible source of oncogenic translocations. Cell 94:463–470.
  • Kanaar, R., J. H. J. Hoeijmakers, and J. van Gent 1998. Molecular mechanisms of DNA double-strand break repair. Trends Cell Biol. 8:483–489.
  • Keith, C. T., and J. Schreiber 1995. PIK-related kinases: DNA repair, recombination and cell cycle checkpoints. Science 270:50–51.
  • Kirchner, J., C. M. Connolly, and J. Sandmeyer 1995. Requirement of RNA polymerase III transcription factors for in vitro position-specific integration of a retroviruslike element. Science 267:1488–1491.
  • Kuhn, A., T. M. Gottleib, S. P. Jackson, and J. Grummt 1995. DNA-dependent protein kinase—a potent inhibitor of transcription by RNA polymerase I. Genes Dev. 9:193–203.
  • Labhart, P. 1995. DNA-dependent protein kinase specifically represses promoter-directed transcription initiation by RNA polymerase I. Proc. Natl. Acad. Sci. USA 92:2934–2938.
  • Laroche, T., S. G. Martin, M. Gotta, H. C. Gorham, F. E. Pryde, E. J. Louis, and J. Gasser 1998. Mutation of yeast Ku genes disrupts the subnuclear organization of telomeres. Curr. Biol. 8:653–656.
  • Lieber, M. R., U. Grawunder, X. T. Wu, and J. Yaneva 1997. Tying loose ends: roles of Ku and DNA dependent protein kinase in the repair of double strand breaks. Curr. Opin. Genet. Dev. 7:99–104.
  • Melamed, C., Y. Nevo, and J. Kupiec 1992. Involvement of cDNA in homologous recombination between Ty elements in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1613–1620.
  • Milne, G. T., S. Jin, K. B. Shannon, and J. Weaver 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4189–4198.
  • Moore, S. P., M. Powers, and J. Garfinkel 1995. Substrate specificity of Ty1 integrase. J. Virol. 69:4683–4692.
  • Nugent, C. I., G. Bosco, L. O. Ross, S. K. Evans, A. P. Salinger, J. K. Moore, J. E. Haber, and J. Lundblad 1998. Telomere maintenance is dependent on activities required for end repair of double strand breaks. Curr. Biol. 8:657–660.
  • Orlando, V., and J. Paro 1993. Mapping polycomb-repressed domains in the bithorax complex using in vivo formaldehyde cross-linked chromatin. Cell 75:1187–1198.
  • Paillard, S., and J. Strauss 1991. Analysis of the mechanism of interaction of simian Ku protein with DNA. Nucleic Acids Res. 19:5619–5624.
  • Porter, S. E., P. W. Greenwell, K. B. Ritchie, and J. Petes 1996. The DNA-binding protein Hdf1p (a putative Ku homologue) is required for maintaining normal telomere length in Saccharomyces cerevisiae. Nucleic Acids Res. 24:582–585.
  • Reynolds, A., and J. Lundblad 1994. Assay for beta-galactosidase in liquid cultures Current protocols in molecular biology In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), 2:13.6.1–13.6.4 Greene Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, N.Y.
  • Sharon, G., T. J. Burkett, and J. Garfinkel 1994. Efficient homologous recombination of Ty1 element cDNA when integration is blocked. Mol. Cell. Biol. 14:6540–6551.
  • Smith, G. C. M., and J. Jackson 1999. The DNA-dependent protein kinase. Genes Dev. 13:916–934.
  • Strahl-Bolsinger, S., A. Hecht, K. Luo, and J. Grunstein 1997. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast. Genes Dev. 11:83–93.
  • Treco, D. A., and J. Lundblad 1994. Yeast media Current protocols in molecular biology In F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl (ed.), 2:13.1.1–13.1.7 Greene Publishing Associates, Inc., and John Wiley & Sons, Inc., New York, N.Y.
  • van Gent, D. C., K. Mizuuchi, and J. Gellert 1996. Similarities between initiation of V(D)J recombination and retroviral integration. Science 271:1592–1594.
  • Wach, A., A. Brachat, R. Pohlmann, and J. Philippsen 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Yieh, L., J. A. Downs, S. P. Jackson, and S. B. Sandmeyer. Unpublished data.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.