13
Views
92
CrossRef citations to date
0
Altmetric
Gene Expression

Identification of Novel Import and Export Signals of Human TAP, the Protein That Binds to the Constitutive Transport Element of the Type D Retrovirus mRNAs

, , , , &
Pages 6306-6317 | Received 05 Apr 1999, Accepted 14 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Afonina, E., R. Stauber, and J. Pavlakis 1998. The human poly(A) binding protein 1 shuttles between the nucleus and the cytoplasm. J. Biol. Chem. 273:13015–13021.
  • Askjaer, P., T. H. Jensen, J. Nilsson, L. Englmeier, and J. Kjems 1998. The specificity of the CRM1-Rev nuclear export signal interaction is mediated by RanGTP. J. Biol. Chem. 273:33414–33422.
  • Bogerd, H. P., A. Echarri, T. M. Ross, and J. Cullen 1998. Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to CRM1. J. Virol. 72:8627–8635.
  • Braun, I., E. Rohrbach, C. Schmitt, and J. Izaurralde 1999. TAP binds to the constitutive transport element through a novel RNA-binding motif that is sufficient to promote CTE-dependent RNA export from the nucleus. EMBO J. 18:1953–1965.
  • Bray, M., S. Prasad, J. W. Dubay, E. Hunter, K.-T. Jeang, D. Rekosh, and J. Hammarskjold 1994. A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc. Natl. Acad. Sci. USA 91:1256–1260.
  • Cullen, B. 1998. Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 248:203–210.
  • Dayton, A. I., E. F. Terwilliger, J. Potz, M. Kowalski, J. G. Sodroski, and J. Haseltine 1988. cis-Acting sequences responsive to the rev gene product of the human immunodeficiency virus. J. Acquired Immune Defic. Syndr. 1:441–452.
  • Dingwall, C., and J. Laskey 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481.
  • Dobbelstein, M., J. Roth, W. T. Kimberly, A. J. Levine, and J. Shenk 1997. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J. 16:4276–4284.
  • Drysdale, C. M., and J. Pavlakis 1991. Rapid activation and subsequent downregulation of the human immunodeficiency virus type 1 promoter in the presence of Tat: possible mechanisms contributing to latency. J. Virol. 65:3044–3051.
  • Ernst, R. K., M. Bray, D. Rekosh, and J. Hammarskjold 1997. Secondary structure and mutational analysis of the Mason-Pfizer monkey virus RNA constitutive transport element. RNA 3:210–222.
  • Ernst, R. K., M. Bray, D. Rekosh, and J. Hammarskjold 1997. A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol. Cell. Biol. 17:135–144.
  • Fan, X. C., and J. Steitz 1998. HNS, a nuclear-cytoplasmic shuttling sequence in HuR. Proc. Natl. Acad. Sci. USA 95:15293–15298.
  • Felber, B. K. 1998. Posttranscriptional control: a general and important regulatory feature of HIV-1 and other retroviruses Viral regulatory structures and their degeneracies XXVIII:101–122 Addison-Wesley Publishing Co., Inc., Reading, Mass.
  • Felber, B. K., M. Hadzopoulou-Cladaras, C. Cladaras, T. Copeland, and J. Pavlakis 1989. rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc. Natl. Acad. Sci. USA 86:1495–1499.
  • Fischer, U., J. Huber, W. C. Boelens, I. W. Mattaj, and J. Luhrmann 1995. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82:475–483.
  • Fornerod, M., M. Ohno, M. Yoshida, and J. Mattaj 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060.
  • Fridell, R. A., U. Fischer, R. Luhrmann, B. E. Meyer, J. L. Meinkoth, M. H. Malim, and J. Cullen 1996. Amphibian transcription factor IIIA proteins contain a sequence element functionally equivalent to the nuclear export signal of human immunodeficiency virus type 1 rev. Proc. Natl. Acad. Sci. USA 93:2936–2940.
  • Fridell, R. A., K. M. Partin, S. Carpenter, and J. Cullen 1993. Identification of the activation domain of equine infectious anemia virus rev. J. Virol. 67:7317–7323.
  • Fukuda, M., S. Asano, T. Nakamura, M. Adachi, M. Yoshida, M. Yanagida, and J. Nishida 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311.
  • Fukuda, M., I. Gotoh, Y. Gotoh, and J. Nishida 1996. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J. Biol. Chem. 271:20024–20028.
  • Grüter, P., C. Tabernero, C. von Kobbe, C. Schmitt, C. Saavedra, A. Bachi, M. Wilm, B. K. Felber, and J. Izaurralde 1998. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1:649–659.
  • Hadzopoulou-Cladaras, M., B. K. Felber, C. Cladaras, A. Athanassopoulos, A. Tse, and J. Pavlakis 1989. The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J. Virol. 63:1265–1274.
  • Hammarskjöld, M. L., J. Heimer, B. Hammarskjöld, I. Sangwan, L. Albert, and J. Rekosh 1989. Regulation of human immunodeficiency virus env expression by the rev gene product. J. Virol. 63:1959–1966.
  • Henderson, B. R., and J. Percipalle 1997. Interactions between HIV Rev and nuclear import and export factors: the Rev nuclear localisation signal mediates specific binding to human importin-beta. J. Mol. Biol. 274:693–707.
  • Hope, T. J., B. L. Bond, D. McDonald, N. P. Klein, and J. Parslow 1991. Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type 1 Rex are functionally interchangeable and share an essential peptide motif. J. Virol. 65:6001–6007.
  • Hope, T. J., X. Huang, D. McDonald, and J. Parslow 1990. Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc. Natl. Acad. Sci. USA 87:7787–7791.
  • Horie, K., and G. N. Pavlakis. Unpublished data.
  • Izaurralde, E., and J. Adam 1998. Transport of macromolecules between the nucleus and the cytoplasm. RNA 4:351–364.
  • Kudo, N., B. Wolff, T. Sekimoto, E. P. Schreiner, Y. Yoneda, M. Yanagida, S. Horinouchi, and J. Yoshida 1998. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242:540–547.
  • Malim, M. H., J. Hauber, S.-Y. Le, J. V. Maizel, and J. Cullen 1989. The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257.
  • Malim, M. H., D. F. McCarn, L. S. Tiley, and J. Cullen 1991. Mutational definition of the human immunodeficiency virus type 1 Rev activation domain. J. Virol. 65:4248–4254.
  • McAfee, J. G., L. Shahied-Milam, S. R. Soltaninassab, and J. LeStourgeon 1996. A major determinant of hnRNP C protein binding to RNA is a novel bZIP-like RNA binding domain. RNA 2:1139–1152.
  • Mermer, B., B. K. Felber, M. Campbell, and J. Pavlakis 1990. Identification of trans-dominant HIV-1 Rev protein mutants by direct transfer of bacterially produced proteins into human cells. Nucleic Acids Res. 18:2037–2044.
  • Meyer, B. E., and J. Malim 1994. The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev. 8:1538–1547.
  • Michael, W. M., M. Choi, and J. Dreyfuss 1995. A nuclear export signal in hnRNP A1: a signal-mediated, temperature-dependent nuclear protein export pathway. Cell 83:415–422.
  • Michael, W. M., P. S. Eder, and J. Dreyfuss 1997. The K nuclear shuttling domain: a novel signal for nuclear import and nuclear export in the hnRNP K protein. EMBO J. 16:3587–3598.
  • Murphy, R., and J. Wente 1996. An RNA-export mediator with an essential nuclear export signal. Nature 383:357–360.
  • Nakielny, S., and J. Dreyfuss 1997. Nuclear export of proteins and RNAs. Curr. Opin. Cell Biol. 9:420–429.
  • Otero, G. C., M. E. Harris, J. E. Donello, and J. Hope 1998. Leptomycin B inhibits equine infectious anemia virus Rev and feline immunodeficiency virus rev function but not the function of the hepatitis B virus posttranscriptional regulatory element. J. Virol. 72:7593–7597.
  • Palmeri, D., and J. Malim 1999. Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol. Cell. Biol. 19:1218–1225.
  • Pasquinelli, A. E., R. K. Ernst, E. Lund, C. Grimm, M. L. Zapp, D. Rekosh, M.-L. Hammarskjöld, and J. Dahlberg 1997. The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) accesses an RNA export pathway utilized by cellular messenger RNAs. EMBO J. 16:7500–7510.
  • Peng, S. S., C. Y. Chen, N. Xu, and J. Shyu 1998. RNA stabilization by the AU-rich element binding protein, HuR, an ELAV protein. EMBO J. 17:3461–3470.
  • Saavedra, C., B. Felber, and J. Izaurralde 1997. The simian retrovirus-1 constitutive transport element, unlike the HIV-1 RRE, uses factors required for cellular mRNA export. Curr. Biol. 7:619–628.
  • Sanger Centre. 1997–1999, copyright date. [Online.] http://genomic.sanger.ac.uk/gf/gf.shtml [12 July 1999, last date accessed.]
  • Santos-Rosa, H., H. Moreno, G. Simos, A. Segref, B. Fahrenkrog, N. Pante, and J. Hurt 1998. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol. Cell. Biol. 18:6826–6838.
  • Schneider, R., M. Campbell, G. Nasioulas, B. K. Felber, and J. Pavlakis 1997. Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/Protease and particle formation. J. Virol. 71:4892–4903.
  • Schwartz, S., B. K. Felber, D. M. Benko, E. M. Fenyö, and J. Pavlakis 1990. Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J. Virol. 64:2519–2529.
  • Segref, A., K. Sharma, V. Doye, A. Hellwig, J. Huber, R. Luhrmann, and J. Hurt 1997. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 16:3256–3271.
  • Shahied-Milam, L., S. R. Soltaninassab, G. V. Iyer, and J. LeStourgeon 1998. The heterogeneous nuclear ribonucleoprotein C protein tetramer binds U1, U2, and U6 snRNAs through its high affinity RNA binding domain (the bZIP-like motif). J. Biol. Chem. 273:21359–21367.
  • Siomi, H., and J. Dreyfuss 1995. A nuclear localization domain in the hnRNP A1 protein. J. Cell Biol. 129:551–560.
  • Stade, K., C. S. Ford, C. Guthrie, and J. Weis 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050.
  • Stauber, R., A. S. Gaitanaris, and J. Pavlakis 1995. Analysis of trafficking of Rev and transdominant Rev proteins in living cells using green fluorescent protein fusions: transdominant Rev blocks the export of Rev from the nucleus to the cytoplasm. Virology 213:439–454.
  • Stauber, R., and J. Pavlakis 1998. Intracellular trafficking and interactions of the HIV-1 Tat protein. Virology 252:126–136.
  • Stauber, R. H., K. Horie, P. Carney, E. A. Hudson, N. I. Tarasova, G. A. Gaitanaris, and J. Pavlakis 1998. Development and applications of enhanced green fluorescent protein mutants. BioTechniques 24:462–471.
  • Tabernero, C., A. S. Zolotukhin, J. Bear, R. Schneider, G. Karsenty, and J. Felber 1997. Identification of an RNA Sequence Within an intracisternal-A particle element able to replace Rev-mediated posttranscriptional regulation of human immunodeficiency virus type 1. J. Virol. 71:95–101.
  • Tabernero, C., A. S. Zolotukhin, A. Valentin, G. N. Pavlakis, and J. Felber 1996. The posttranscriptional control element of the simian retrovirus type 1 forms an extensive RNA secondary structure necessary for its function. J. Virol. 70:5998–6011.
  • Truant, R., and J. Cullen 1999. The arginine-rich domains present in human immunodeficiency virus type 1 tat and rev function as direct importin beta-dependent nuclear localization signals. Mol. Cell. Biol. 19:1210–1217.
  • Weichselbraun, I., G. Farrington, J. Rusche, E. Bohnlein, and J. Hauber 1992. Definition of the human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex protein activation domain by functional exchange. J. Virol. 66:2583–2587.
  • Weighardt, F., G. Biamonti, and J. Riva 1995. Nucleo-cytoplasmic distribution of human hnRNP proteins: a search for the targeting domains in hnRNP A1. J. Cell Sci. 108:545–555.
  • Wolff, B., J.-J. Sanglier, and J. Wang 1997. Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem. Biol. 4:139–147.
  • Yoon, D. W., H. Lee, W. Seol, M. DeMaria, M. Rosenzweig, and J. Jung 1997. Tap: a novel cellular protein that interacts with tip of herpesvirus saimiri and induces lymphocyte aggregation. Immunity 6:571–582.
  • Zolotukhin, A. S., and J. Felber 1997. Mutations in the nuclear export signal of human Ran-binding protein RanBP1 block the Rev-mediated posttranscriptional regulation of human immunodeficiency virus type 1. J. Biol. Chem. 272:11356–11360.
  • Zolotukhin, A. S., and J. Felber 1999. Nucleoporins Nup98 and Nup214 participate in nuclear export of human immunodeficiency virus type 1 Rev. J. Virol. 73:120–127.
  • Zolotukhin, A. S., A. Valentin, G. N. Pavlakis, and J. Felber 1994. Continuous propagation of RRE(−) and Rev(−)RRE(−) human immunodeficiency virus type 1 molecular clones containing a cis-acting element of simian retrovirus type 1 in human peripheral blood lymphocytes. J. Virol. 68:7944–7952.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.