5
Views
66
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Differential Roles of Akt, Rac, and Ral in R-Ras-Mediated Cellular Transformation, Adhesion, and Survival

, , , , , , & show all
Pages 6333-6344 | Received 19 Jan 1999, Accepted 09 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Ahmed, N. N., H. L. Grimes, A. Bellacosa, T. O. Chan, and J. Tsichlis 1997. Transduction of interleukin-2 antiapoptotic and proliferative signals via Akt protein kinase. Proc. Natl. Acad. Sci. USA 94:3627–3632.
  • Albright, C. F., B. W. Giddings, J. Liu, M. Vito, and J. Weinberg 1993. Characterization of a guanine nucleotide dissociation stimulation for a ras-related GTPase. EMBO J. 12:339–347.
  • Assoian, R. K. 1997. Anchorage-dependent cell cycle progression. J. Cell Biol. 13:1–4.
  • Cantor, S. B., T. Urano, and J. Feig 1995. Identification and characterization of Ral-binding protein 1, a potential downstream target of Ral GTPases. Mol. Cell. Biol. 15:4578–4584.
  • Chan, A. M.-L., T. Miki, K. A. Meyers, and J. Aaronson 1991. A human oncogene of the RAS superfamily unmasked by expression cDNA cloning. Proc. Natl. Acad. Sci. USA 91:7558–7562.
  • Coso, O. A., M. Chiariello, J.-C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. Gutkind 1995. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK. Cell 81:1137–1146.
  • Cowley, S., H. Paterson, K. Pauline, and J. Marshall 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Cox, A. D., T. R. Brtva, D. G. Lowe, and J. Der 1994. R-ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 9:3281–3288.
  • Datta, K., A. Bellacosa, T. O. Chan, and J. Tsichlis 1996. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J. Biol. Chem. 271:30835–30839.
  • Drivas, G. T., A. Shih, E. Coutavas, M. G. Rush, and J. D’Eustachio 1990. Characterization of four novel ras-like genes expressed in a human teratocarcinoma cell line. Mol. Cell. Biol. 10:1793–1798.
  • D’Souza-Schorey, C., B. Boettner, and J. Van Aelst 1998. Rac regulates integrin-mediated spreading and increased adhesion of T lymphocytes. Mol. Cell. Biol. 18:3936–3946.
  • Dudek, H., S. R. Datta, T. F. Franke, M. J. Birnbaum, R. Yao, G. M. Cooper, R. A. Segal, D. R. Kaplan, and J. Greenberg 1997. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665.
  • Franke, T. F., S. I. Yang, T. O. Chan, K. Datta, A. Kazlauskas, D. K. Morrison, D. R. Kaplan, and J. Tsichlis 1995. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736.
  • Fruman, D. A., R. E. Meyers, and J. Cantley 1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67:481–507.
  • Ginsberg, M. H., X. Du, and J. Plow 1992. Inside-out integrin signalling. Curr. Opin. Cell Biol. 4:766–771.
  • Graham, S. M., A. D. Cox, G. Drivas, M. G. Rush, P. D’Eustachio, and J. Der 1994. Aberrant function of the Ras-related protein TC21/R-Ras2 triggers malignant transformation. Mol. Cell. Biol. 14:4108–4115.
  • Huff, S. Y., L. A. Quilliam, A. D. Cox, and J. Der 1997. R-Ras is regulated by activators and effectors distinct from those that control Ras function. Oncogene 14:133–143.
  • Hughes, P. E., M. W. Renshaw, M. Pfaff, J. Forsyth, V. M. Keivens, M. A. Schwartz, and J. Ginsberg 1997. Suppression of integrin activation: a novel function of a Ras/Raf-initiated MAP kinase pathway. Cell 88:521–530.
  • Joneson, T., M. A. White, M. H. Wigler, and J. Bar-Sagi 1996. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of RAS. Science 271:810–812.
  • Joneson, T., M. McDonough, D. Bar-Sagi, and J. Van Aelst 1996. RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 274:1374–1376.
  • Jullien-Flores, V., O. Dorseuil, F. Romero, F. Letourneur, S. Saragosti, R. Berger, A. Tavitian, G. Gacon, and J. Camonis 1995. Bridging Ral GTPase to Rho pathways. RLIP76, a Ral effector with CDC42/Rac GTPase-activating protein activity. J. Biol. Chem. 270:22473–22477.
  • Kauffmann-Zeh, A., P. Rodriguez-Viciana, E. Ulrich, C. Gilbert, P. Coffer, J. Downward, and J. Evan 1997. Suppression of c-Myc-induced apoptosis by Ras signalling through PI(3)K and PKB. Nature 385:544–548.
  • Khosravi-Far, R., M. A. White, J. K. Westwick, P. A. Solski, M. Chrzanowska-Wodnicka, L. Van Aelst, M. H. Wigler, and J. Der 1996. Oncogenic Ras activation of Raf/mitogen-activated protein kinase-independent pathways is sufficient to cause tumorigenic transformation. Mol. Cell. Biol. 16:3923–3933.
  • Khwaja, A., P. Rodriguez-Viciana, S. Wennstrom, P. H. Warne, and J. Downward 1997. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16:2783–2793.
  • Kimmelman, A., T. Tolkacheva, M. V. Lorenzi, M. Osada, and J. Chan 1997. Identification and characterization of R-ras3: a novel member of the RAS gene family with a non-ubiquitous pattern of tissue distribution. Oncogene 15:2675–2686.
  • King, W. G., M. D. Mattaliano, T. O. Chan, P. N. Tsichlis, and J. Brugge 1997. Phosphatidylinositol 3-kinase is required for integrin-stimulated Akt and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol. 17:4406–4418.
  • Klippel, A., M. A. Escobedo, M. S. Wachowicz, I. G. Apel, T. W. Brown, M. A. Giedlin, W. M. Kavanaugh, and J. Williams 1998. Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol. Cell. Biol. 18:5699–5711.
  • Lamarche, N., N. Tapon, L. Stowers, P. D. Burbelo, P. Aspenstrom, T. Bridges, J. Chant, and J. Hall 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87:519–529.
  • Lowe, D. G., D. J. Capon, E. Delwart, A. Y. Sakaguchi, S. L. Naylor, and J. Goeddel 1987. Structure of the human and murine R-ras genes, novel genes closely related to ras proto-oncogenes. Cell 48:137–146.
  • Marte, B. M., P. Rodriguez-Viciana, S. Wennstrom, P. H. Warne, and J. Downward 1997. R-Ras can activate the phosphoinositide 3-kinase but not the MAP kinase arm of the Ras effector pathways. Curr. Biol. 7:63–70.
  • Mischak, H., J. H. Pierce, J. Goodnight, M. G. Kazanietz, P. M. Blumberg, and J. Mushinski 1993. Phorbol ester-induced myeloid differentiation is mediated by protein kinase C-alpha and -delta and not by protein kinase C-beta II, -epsilon, -zeta, and -eta. J. Biol. Chem. 268:20110–20115.
  • Murga, C., L. Laguinge, R. Wetzker, A. Cuadrado, and J. Gutkind 1998. Activation of Akt/protein kinase B by G protein-coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinase gamma. J. Biol. Chem. 273:19080–19085.
  • Park, S. H., and J. Weinberg 1995. A putative effector of Ral has homology to Rho/Rac GTPase activating proteins. Oncogene 11:2349–2355.
  • Pierce, J. H., M. Ruggiero, T. P. Fleming, P. P. Di Fiore, J. S. Greenberger, L. Varticovski, J. Schlessinger, G. Rovera, and J. Aaronson 1988. Signal transduction through the EGF receptor transfected in IL-3-dependent hematopoietic cells. Science 239:628–631.
  • Plantefaber, L. C., and J. Hynes 1989. Changes in integrin receptors on oncogenically transformed cells. Cell 56:281–290.
  • Prendergast, G. C., R. Khosravi-Far, P. A. Solski, H. Kurzawa, P. F. Lebowitz, and J. Der 1995. Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 10:2289–2296.
  • Qiu, R.-G., J. Chen, D. Kirn, F. McCormick, and J. Symons 1995. An essential role for Rac in Ras transformation. Nature 374:457–459.
  • Qiu, R. G., A. Abo, F. McCormick, and J. Symons 1997. Cdc42 regulates anchorage-independent growth and is necessary for Ras transformation. Mol. Cell. Biol. 17:3449–3458.
  • Qiu, R. G., J. Chen, F. McCormick, and J. Symons 1995. A role for Rho in Ras transformation. Proc. Natl. Acad. Sci. USA 92:11781–11785.
  • Ramos, J. W., T. K. Kojima, P. E. Hughes, C. A. Fenczik, and J. Ginsberg 1998. The death effector domain of PEA-15 is involved in its regulation of integrin activation. J. Biol. Chem. 273:33897–33900.
  • Rey, I., P. Taylor-Harris, H. Van Erp, and J. Hall 1994. R-ras interacts with ras-GAP, neurofibromin and c-raf but does not regulate cell growth or differentiation. Oncogene 9:685–692.
  • Rodriguez-Viciana, P., P. H. Warne, A. Khwaja, B. M. Marte, D. Pappin, P. Das, M. D. Waterfield, A. Ridley, and J. Downward 1997. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467.
  • Rodriguez-Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fry, M. D. Waterfield, and J. Downward 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532.
  • Rodriguez-Viciana, P., P. H. Warne, B. Vanhaesebroeck, M. D. Waterfield, and J. Downward 1996. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15:2442–2451.
  • Saez, R., A. M.-L. Chan, T. Miki, and J. Aaronson 1994. Oncogenic activation of human R-ras by point mutations analogous to those of prototype H-ras oncogenes. Oncogene 9:2977–2982.
  • Songyang, Z., D. Baltimore, L. C. Cantley, D. R. Kaplan, and J. Franke 1997. Interleukin 3-dependent survival by the Akt protein kinase. Proc. Natl. Acad. Sci. USA 94:11345–11350.
  • Spaargaren, M., and J. Bischoff 1994. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap. Proc. Natl. Acad. Sci. USA 91:12609–12613.
  • Spaargaren, M., G. A. Martin, F. McCormick, M. J. Fernandez-Sarabia, and J. Bischoff 1994. The Ras-related protein R-ras interacts directly with Raf-1 in a GTP-dependent manner. Biochem. J. 300:303–307.
  • Sutor, S. L., B. T. Vroman, E. A. Armstrong, R. T. Abraham, and J. Karnitz 1999. A phosphatidylinositol 3-kinase-dependent pathway that differentially regulates c-Raf and A-Raf. J. Biol. Chem. 274:7002–7010.
  • Suzuki, J., Y. Kaziro, and J. Koide 1997. An activated mutant of R-Ras inhibits cell death caused by cytokine deprivation in BaF3 cells in the presence of IGF-I. Oncogene 15:1689–1697.
  • Wang, H. G., J. A. Millan, A. D. Cox, C. J. Der, U. R. Rapp, T. Beck, H. Zha, and J. Reed 1995. R-Ras promotes apoptosis caused by growth factor deprivation via a Bcl-2 suppressible mechanism. J. Cell Biol. 129:1103–1114.
  • Westwick, J. K., Q. T. Lambert, G. J. Clark, M. Symons, L. Van Aelst, R. G. Pestell, and J. Der 1997. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol. Cell. Biol. 17:1324–1335.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. Van Aelst, M. Karin, and J. Wigler 1995. Multiple Ras functions can contribute to mammalian cell transformation. Cell 80:533–541.
  • White, M. A., T. Vale, J. H. Camonis, E. Schaefer, and J. Wigler 1996. A role for the Ral guanine nucleotide dissociation stimulator in mediating Ras-induced transformation. J. Biol. Chem. 271:16439–16442.
  • Wigler, M., S. Silverstein, L. S. Lee, A. Pellicer, Y. C. Cheng, and J. Axel 1977. Transfer of purified herpes virus thymidine kinase gene to cultured mouse cells. Cell 11:223–232.
  • Wolthuis, R. M., B. Franke, M. van Triest, B. Bauer, R. H. Cool, J. H. Camonis, J. W. Akkerman, and J. Bos 1998. Activation of the small GTPase Ral in platelets. Mol. Cell. Biol. 18:2486–2491.
  • Yang, J. J., J. S. Kang, and J. Krauss 1998. Ras signals to the cell cycle machinery via multiple pathways to induce anchorage-independent growth. Mol. Cell. Biol. 18:2586–2595.
  • Zhang, Z., K. Vuori, H. G. Wang, J. C. Reed, and J. Ruoslahti 1996. Integrin activation by R-ras. Cell 85:61–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.