23
Views
106
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Direct Association and Nuclear Import of the Hepatitis B Virus X Protein with the NF-κB Inhibitor IκBα

, , , , , , & show all
Pages 6345-6354 | Received 02 Feb 1999, Accepted 27 May 1999, Published online: 27 Mar 2023

REFERENCES

  • Arenzana-Seisdedos, F., P. Turpin, M. Rodriguez, D. Thomas, R. T. Hay, J. L. Virelizier, and J. Dargemont 1997. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110:369–378.
  • Arenzana-Seisdedos, F., J. Thompson, M. S. Rodriguez, F. Bachelerie, D. Thomas, and J. Hay 1995. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol. 15:2689–2696.
  • Baldwin, A. S. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Benn, J., and J. Schneider 1994. Hepatitis B virus HBx protein activates Ras-GTP complex formation and establishes a Ras, Raf, MAP kinase signaling cascade. Proc. Natl. Acad. Sci. USA 91:10350–10354.
  • Bréchot, C. 1997. Molecular mechanisms of hepatitis B and C viruses related liver carcinogenesis, p. 490–508. In M. Rizzetto, R. H. Purcell, J. L. Gerin, G. Verme (ed.), Viral hepatitis and liver disease. Edizioni Minerva Medica, Rome, Italy.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. Qi, W. Y. Lee, and J. Ballard 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and J. Siebenlist 1995. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.
  • Chen, H.-S., S. Kaneko, R. Girones, R. W. Anderson, W. E. Hornbuckle, B. C. Tennant, P. J. Cote, J. L. Gerin, R. H. Purcell, and J. Miller 1993. The woodchuck hepatitis virus X gene is important for establishment of virus infection in woodchucks. J. Virol. 67:1218–1226.
  • Chirillo, P., M. Falco, P. L. Puri, M. Artini, C. Balsano, M. Levrero, and J. Natoli 1996. Hepatitis B virus pX activates NF-κB-dependent transcription through a Raf-independent pathway. J. Virol. 70:641–646.
  • Chirillo, P., S. Pagano, G. Natoli, P. L. Puri, V. L. Burgio, C. Balsano, and J. Levrero 1997. The hepatitis B virus X gene induces p53-mediated programmed cell death. Proc. Natl. Acad. Sci. USA 94:8162–8167.
  • Chu, Z. L., J. A. DiDonato, J. Hawiger, and J. Ballard 1998. The Tax oncoprotein of human T-cell leukemia virus type 1 associates with and persistently activates IκB kinases containing IKKα and IKKβ. J. Biol. Chem. 273:15891–15894.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and J. Karin 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554.
  • Doria, M., N. Klein, R. Lucito, and J. Schneider 1995. The hepatitis B virus HBx protein is a dual specificity cytoplasmic activator of Ras and nuclear activator of transcription factors. EMBO J. 14:4747–4757.
  • Dorjsuren, D., Y. Lin, W. Wei, T. Yamashita, T. Nomura, N. Hayashi, and J. Murakami 1998. RMP, a novel RNA polymerase II subunit 5-interacting protein, counteracts transactivation by hepatitis B virus X protein. Mol. Cell. Biol. 18:7546–7555.
  • Eliopoulos, A. G., and J. Rickinson 1998. Epstein-Barr virus: LMP1 masquerades as an active receptor. Curr. Biol. 8:196–198.
  • Elmore, L. W., A. R. Hancock, S.-F. Chang, X. W. Wang, S. Chang, C. P. Callahan, D. A. Geller, H. Will, and J. Harris 1997. Hepatitis B virus X protein and p53 tumor suppressor interactions in the modulation of apoptosis. Proc. Natl. Acad. Sci. USA 94:14707–14712.
  • Fischer, M., L. Runkel, and J. Schaller 1995. HBx protein of hepatitis B virus interacts with the C-terminal portion of a novel human proteasome alpha-subunit. Virus Genes 10:99–102.
  • Fornerod, M., M. Ohno, M. Yoshida, and J. Mattaj 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060.
  • Fritz, C. C., and J. Green 1996. HIV Rev uses a conserved cellular protein export pathway for the nucleocytoplasmic transport of viral RNAs. Curr. Biol. 6:848–854.
  • Fukuda, M., S. Asano, T. Nakamura, M. Adachi, M. Yoshida, M. Yanagida, and J. Nishida 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311.
  • Geleziunas, R., S. Ferrell, X. Lin, Y. Mu, E. T. Cunningham Jr., M. Grant, M. A. Connelly, J. E. Hambor, K. B. Marcu, and J. Greene 1998. Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IκB kinase α (IKKα) and IKKβ cellular kinases. Mol. Cell. Biol. 18:5157–5165.
  • Gottlob, K., S. Pagano, M. Levrero, and J. Graessmann 1998. Hepatitis B virus X protein transcription activation domains are neither required nor sufficient for cell transformation. Cancer Res. 58:3566–3570.
  • Haviv, I., Y. Matza, and J. Shaul 1998. pX, the HBV-encoded coactivator, suppresses the phenotypes of TBP and TAFII250 mutants. Genes Dev. 15:1217–1226.
  • Haviv, I., M. Shamay, G. Doitsh, and J. Shaul 1998. Hepatitis B virus pX targets TFIIB in transcription coactivation. Mol. Cell. Biol. 18:1562–1569.
  • Hildt, E., P. Hofschneider, and J. Urban 1996. The role of hepatitis B virus (HBV) in the development of hepatocellular carcinoma. Virology 7:333–347.
  • Huang, J., J. Kwong, E. C.-Y. Sun, and J. Liang 1996. Proteasome complex as a potential cellular target of hepatitis B virus X protein. J. Virol. 70:5582–5591.
  • Huxford, T., D. B. Huang, S. Malek, and J. Ghosh 1998. The crystal structure of the IκBα/NF-κB complex reveals mechanisms of NF-κB inactivation. Cell 95:759–770.
  • Jacobs, M. D., and J. Harrison 1998. Structure of an IκBα/NF-κB complex. Cell 95:749–758.
  • Kekule, A. S., U. Lauer, L. Weiss, B. Luber, and J. Hofschneider 1993. Hepatitis B virus transactivator HBx uses a tumour promoter signalling pathway. Nature 361:742–745.
  • Kim, H., H. Lee, and J. Yun 1998. X-gene product of hepatitis B virus induces apoptosis in liver cells. J. Biol. Chem. 273:381–385.
  • Lamond, A. I., and J. Earnshaw 1998. Structure and function in the nucleus. Science 280:547–553.
  • Lara-Pezzi, E., A. L. Armesilla, P. L. Majano, J. M. Redondo, and J. Lopez-Cabrera 1998. The hepatitis B virus X protein activates nuclear factor of activated T cells (NF-AT) by a cyclosporin A-sensitive pathway. EMBO J. 17:7066–7077.
  • Lara-Pezzi, E., P. L. Majano, M. Gomez-Gonzalo, C. Garcia-Monzon, R. Moreno-Otero, M. Levrero, and J. Lopez-Cabrera 1998. The hepatitis B virus X protein up-regulates tumor necrosis factor alpha gene expression in hepatocytes. Hepatology 28:1013–1021.
  • Lee, Y. H., and J. Yun 1998. HBx protein of hepatitis B virus activates Jak1-Stat signaling. J. Biol. Chem. 273:25510–25515.
  • Mahe, Y., N. Mukaida, K. Kuno, M. Akiyama, N. Ikeda, K. Matsushima, and J. Murakami 1991. Hepatitis B virus X protein transactivates human interleukin-8 gene through acting on nuclear factor κB and CCAAT/enhancer-binding protein-like cis-elements. J. Biol. Chem. 266:13759–13763.
  • May, M. J., and J. Ghosh 1998. Signal transduction through NF-κB. Immunol. Today 19:80–88.
  • Mercurio, F., H. Y. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. W. Li, D. B. Young, M. Barbosa, and J. Mann 1997. IKK-1 and IKK-2—cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866.
  • Oguey, D., L. Dumenco, R. Pierce, and J. Fausto 1996. Analysis of tumorigenicity of the X gene of hepatitis B virus in a nontransformed hepatocyte cell line and the effects of cotransfection with a murine p53 mutant equivalent to human codon 249. Hepatology 24:1024–1033.
  • Ossareh-Nazari, B., F. Bachelerie, and J. Dargemont 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:141–144.
  • Quadri, I., H. Maguire, and J. Siddiqui 1995. Hepatitis B virus transactivator protein X interacts with the TATA-binding protein. Proc. Natl. Acad. Sci. USA 92:1003–1007.
  • Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. D. Cao, and J. Rothe 1997. Identification and characterization of an IκB kinase. Cell 90:373–383.
  • Rodriguez, M. S., I. Michalopoulos, F. Arenzana-Seisdedos, and J. Hay 1995. Inducible degradation of IκBα in vitro and in vivo requires the acidic C-terminal domain of the protein. Mol. Cell. Biol. 15:2413–2419.
  • Rossner, M. T. 1992. Hepatitis B virus X-gene product: a promiscuous transcriptional activator. J. Med. Virol. 36:101–117.
  • Rothwarf, D. M., E. Zandi, G. Natoli, and J. Karin 1998. IKK-γ is an essential regulatory subunit of the IκB kinase complex. Nature 395:297–300.
  • Sachdev, S., and J. Hannink 1998. Loss of IκBα-mediated control over nuclear import and DNA binding enables oncogenic activation of c-Rel. Mol. Cell. Biol. 18:5445–5456.
  • Sachdev, S., A. Hoffmann, and J. Hannink 1998. Nuclear localization of IκBα is mediated by the second ankyrin repeat: the IκBα ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol. Cell. Biol. 18:2524–2534.
  • Siddiqui, A., R. Gaynor, A. Srinivasan, J. Mapoles, and J. Farr 1989. Trans-activation of viral enhancers including long terminal repeat of the human immunodeficiency virus by the hepatitis B virus X protein. Virology 169:479–484.
  • Sirma, H., R. Weil, O. Rosmorduc, S. Urban, A. Israël, D. Kremsdorf, and J. Bréchot 1998. Cytosol is the prime compartment of hepatitis B virus where it colocalizes with the proteasome. Oncogene 16:2051–2063.
  • Sitterlin, D., T.-H. Lee, S. Prigent, P. Tiollais, J. S. Butel, and J. Transy 1997. Interaction of the UV-damaged DNA-binding protein with hepatitis B virus X protein is conserved among mammalian hepadnaviruses and restricted to transactivation-proficient X-insertion mutants. J. Virol. 71:6194–6199.
  • Stade, K., C. S. Ford, C. Guthrie, and J. Weis 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050.
  • Su, F., and J. Schneider 1996. Hepatitis B virus HBx protein activates transcription factor NF-κB by acting on multiple cytoplasmic inhibitors of rel-related proteins. J. Virol. 70:4558–4566.
  • Su, F., and J. Schneider 1997. Hepatitis B virus HBx protein sensitizes cells to apoptotic killing by tumor necrosis factor α. Proc. Natl. Acad. Sci. USA 94:8744–8749.
  • Su, Q., C. Shroder, W. Hofmann, G. Otto, R. Pichlmayr, and J. Bannasch 1998. Expression of hepatitis B virus X protein in HBV-infected human livers and hepatocellular carcinomas. Hepatology 27:1109–1120.
  • Takada, S., N. Kaneniwa, N. Tsuchida, and J. Koike 1997. Cytoplasmic retention of the p53 tumor suppressor gene product is observed in the hepatitis B virus X gene-transfected cells. Oncogene 15:1895–1901.
  • Terradillos, O., T. Pollicino, H. Lecoeur, M. Tripodi, M. Gougeon, P. Tiollais, and J. Buendia 1998. p-53-independent apoptotic effects of the hepatitis B virus HBx protein in vivo and in vitro. Oncogene 17:2115–2123.
  • Traenckner, E. B., and J. Baeuerle 1995. Appearance of apparently ubiquitin-conjugated IκBα during its phosphorylation-induced degradation in intact cells. J. Cell Sci. Suppl. 19:79–84.
  • Turpin, P., R. T. Hay, and J. Dargemont 1999. Characterization of IκBα nuclear import pathway. J. Biol. Chem., 274:6804–6812.
  • Twu, J. S., K. Chu, and J. Robinson 1989. Hepatitis B virus X gene activates κ B-like enhancer sequences in the long terminal repeat of human immunodeficiency virus 1. Proc. Natl. Acad. Sci. USA 86:5168–5172.
  • Uhlik, M., L. Good, G. T. Xiao, E. W. Harhaj, E. Zandi, M. Karin, and J. Sun 1998. NF-κB-inducing kinase and IκB kinases participate in human T-cell leukemia virus I Tax-mediated NF-κB activation. J. Biol. Chem. 273:21132–21136.
  • Verma, I. M., J. K. Stevenson, E. M. Schwarz, D. Van Antwerp, and J. Miyamoto 1995. Rel/NF-κB/IκB family: intimate tales of association and dissociation. Genes Dev. 9:2723–2735.
  • Wang, H.-D., A. Trivedi, and J. Johnson 1998. Regulation of RNA polymerase I-dependent promoters by the hepatitis B virus X protein via activated Ras and TATA-binding protein. Mol. Cell. Biol. 18:7086–7094.
  • Weil, R. Unpublished data.
  • Weil, R., C. Laurent-Winter, and J. Israël 1997. Regulation of IκBβ degradation—similarities to and differences from IκBα. J. Biol. Chem. 272:9942–9949.
  • Whiteside, S. T., J. C. Epinat, N. R. Rice, and J. Israël 1997. IκBɛ, a novel member of the IκB family, controls relA and c-rel NF-κB activity. EMBO J. 16:1413–1426.
  • Whiteside, S. T., M. K. Ernst, O. LeBail, C. Laurent-Winter, N. Rice, and J. Israël 1995. N- and C-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345.
  • Williams, J. S., and J. Andrisani 1995. The hepatitis B virus X protein targets the basic region-leucine zipper domain of CREB. Proc. Natl. Acad. Sci. USA 92:3819–3823.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and J. Goeddel 1997. IκB kinase-β: NF-κB activation and complex formation with IκB kinase-α and NIK. Science 278:866–869.
  • Yamaoka, S., G. Courtois, C. Bessia, S. T. Whiteside, R. Weil, F. Agou, H. E. Kirk, R. J. Kay, and J. Israël 1998. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93:1231–1240.
  • Yen, T. 1996. Hepadna viral X protein: review of recent progress. J. Biomed. Sci. 3:20–30.
  • Yin, M. J., L. B. Christerson, Y. Yamamoto, Y. T. Kwak, S. Xu, F. Mercurio, M. Barbosa, M. H. Cobb, and J. Gaynor 1998. HTLV-I Tax protein binds to MEKK1 to stimulate IκB kinase activity and NF-κB activation. Cell 93:875–884.
  • Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and J. Karin 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKK-α and IKK-β, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252.
  • Zoulim, F., J. Saputelli, and J. Seeger 1994. Woodchuck hepatitis virus X protein is required for viral infection in vivo. J. Virol. 68:2026–2030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.