34
Views
242
CrossRef citations to date
0
Altmetric
Cell Growth and Development

CDC25A Phosphatase Is a Target of E2F and Is Required for Efficient E2F-Induced S Phase

, , , , , & show all
Pages 6379-6395 | Received 20 Jan 1999, Accepted 14 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Ausubel F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, K. Struhl 1988. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York, N.Y.
  • Baker, S. J., S. Markowitz, E. R. Fearon, J. K. V. Willson, and J. Vogelstein 1990. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science 249:912–915.
  • Bartek, J., J. Bartkova, and J. Lukas 1996. The retinoblastoma protein pathway and the restriction point. Curr. Opin. Cell Biol. 8:805–814.
  • Bates, S., A. C. Phillips, P. A. Clark, F. Stott, G. Peters, R. L. Ludwig, and J. Vousden 1998. p14ARF links the tumour suppressors RB and p53. Nature 395:124–125.
  • Blake, M. C., and J. Azizkhan 1989. Transcription factor E2F is required for efficient expression of the hamster dihydrofolate reductase gene in vitro and in vivo. Mol. Cell. Biol. 9:4994–5002.
  • Botz, J., K. Zerfass-Thome, D. Spitkovsky, H. Delius, B. Vogt, M. Eilers, A. Hatzigeorgiou, and J. Jansen-Dürr 1996. Cell cycle regulation of the murine cyclin E gene depends on an E2F binding site in the promoter. Mol. Cell. Biol. 16:3401–3409.
  • Cartwright, P., H. Müller, C. Wagener, K. Holm, and J. Helin 1998. E2F-6: a novel member of the E2F family is an inhibitor of E2F-dependent transcription. Oncogene 17:611–624.
  • Clarke, A., E. Maandag, M. van Roon, N. van der Lugt, M. van der Valk, M. Hooper, A. Berns, and J. te Riele 1992. Requirement for a functional Rb-1 gene in murine development. Nature 359:328–330.
  • Connell-Crowley, L., S. J. Elledge, and J. Harper 1998. G1 cyclin-dependent kinases are sufficient to initiate DNA synthesis in quiescent human fibroblasts. Curr. Biol. 8:65–68.
  • Cress, W. D., D. G. Johnson, and J. Nevins 1993. A genetic analysis of the E2F1 gene distinguishes regulation by Rb, p107, and adenovirus E4. Mol. Cell. Biol. 13:6314–6325.
  • Dalton, S. 1992. Cell cycle regulation of the human cdc2 gene. EMBO J. 11:1797–1804.
  • DeGregori, J., T. Kowalik, and J. Nevins 1995. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol. Cell. Biol. 15:4215–4224.
  • DeGregori, J., G. Leone, A. Miron, L. Jakoi, and J. Nevins 1997. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc. Natl. Acad. Sci. USA 94:7245–7250.
  • Dou, Q.-P., P. J. Markell, and J. Pardee 1992. Thymidine kinase transcription is regulated at G1/S phase by a complex that contains retinoblastoma-like protein and a cdc2 kinase. Proc. Natl. Acad. Sci. USA 89:3256–3260.
  • Draetta, G., and J. Eckstein 1997. Cdc25 protein phosphatases in cell proliferation. Biochim. Biophys. Acta 1332:M53–M63.
  • Duronio, R. J., A. Brook, N. Dyson, and J. O’Farrell 1996. E2F-induced S phase requires cyclin E. Genes Dev. 10:2505–2513.
  • Duronio, R. J., and J. O’Farrell 1995. Developmental control of the G1 to S transition in Drosophila: cyclin E is a limiting downstream target of E2F. Genes Dev. 9:1456–1468.
  • Dyson, N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262.
  • Eilers, M., D. Picard, K. R. Yamamoto, and J. Bishop 1989. Chimaeras of myc oncoprotein and steroid receptors cause hormone-dependent transformation of cells. Nature 340:66–68.
  • Elledge, S. J., R. Richman, F. L. Hall, R. T. Williams, N. Lodgson, and J. Harper 1992. CDK2 encodes a 33-kDa cyclin A-associated protein kinase and is expressed before CDC2 in the cell cycle. Proc. Natl. Acad. Sci. USA 89:2907–2911.
  • Field, S. J., F. Y. Tsai, F. Kuo, A. M. Zubiaga, W. G. Kaelin Jr., D. M. Livingston, S. H. Orkin, and J. Greenberg 1996. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85:549–561.
  • Galaktionov, K., and J. Beach 1991. Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: evidence for multiple roles of mitotic cyclins. Cell 67:1181–1194.
  • Galaktionov, K., X. Chen, and J. Beach 1996. Cdc25 cell-cycle phosphatase as a target of c-myc. Nature 382:511–517.
  • Galaktionov, K., A. K. Lee, J. Eckstein, G. Draetta, J. Meckler, M. Loda, and J. Beach 1995. Cdc25 phosphatases as potential human oncogenes. Science 269:1575–1577.
  • Gaubatz, S., J. G. Wood, and J. Livingston 1998. Unusual proliferation arrest and transcriptional control properties of a newly discovered E2F family member, E2F-6. Proc. Natl. Acad. Sci. USA 95:9190–9195.
  • Geng, Y., E. N. Eaton, M. Picón, J. M. Roberts, A. S. Lundberg, A. Gifford, C. Sardet, and J. Weinberg 1996. Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene 12:1173–1180.
  • Guy, C. T., W. Zhou, S. Kaufman, and J. Robinson 1996. E2F-1 blocks terminal differentiation and causes proliferation in transgenic megakaryocytes. Mol. Cell. Biol. 16:685–693.
  • Harlow, E., D. Lane 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Hateboer, G., A. Wobst, B. O. Petersen, L. Le Cam, E. Vigo, C. Sardet, and J. Helin 1998. Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F. Mol. Cell. Biol. 18:6679–6697.
  • Helin, K. 1998. Regulation of cell proliferation by the E2F transcription factors. Curr. Opin. Genet. Dev. 8:28–35.
  • Helin, K., and J. Harlow 1994. Heterodimerization of the transcription factors E2F-1 and DP-1 is required for binding to the adenovirus E4 (ORF6/7) protein. J. Virol. 68:5027–5035.
  • Helin, K., C.-L. Wu, A. R. Fattaey, J. A. Lees, B. D. Dynlacht, C. Ngwu, and J. Harlow 1993. Heterodimerization of the transcription factors E2F-1 and DP-1 leads to cooperative transactivation. Genes Dev. 7:1850–1861.
  • Herrera, R. E., V. P. Sah, B. O. Williams, T. P. Mäkelä, R. A. Weinberg, and J. Jacks 1996. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol. Cell. Biol. 16:2403–2407.
  • Hiebert, S. W., M. Lipp, and J. Nevins 1989. E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc. Natl. Acad. Sci. USA 86:3594–3598.
  • Hiebert, S. W., G. Packham, D. K. Strom, R. Haffner, M. Oren, G. Zambetti, and J. Cleveland 1995. E2F-1:DP-1 induces p53 and overrides survival factors to trigger apoptosis. Mol. Cell. Biol. 15:6864–6874.
  • Hoffmann, I., G. Draetta, and J. Karsenti 1994. Activation of the phosphatase activity of human cdc25A by a cdk2-cyclin E dependent phosphorylation at the G1/S transition. EMBO J. 13:4302–4310.
  • Holmberg, C., K. Helin, M. Sehested, and J. Karlström 1998. E2F-1 induced p53-independent apoptosis in transgenic mice. Oncogene 17:143–155.
  • Hsiao, K.-M., S. L. McMahon, and J. Farnham 1994. Multiple DNA elements are required for the growth regulation of the mouse E2F1 promoter. Genes Dev. 8:1526–1537.
  • Hsieh, J.-K., S. Fredersdorf, T. Kouzarides, K. Martin, and J. Lu 1997. E2F1-induced apoptosis requires DNA binding but not transactivation and is inhibited by the retinoblastoma protein through direct interaction. Genes Dev. 11:1840–1852.
  • Huet, X., J. Rech, A. Plet, A. Vié, and J. Blanchard 1996. Cyclin A expression is under negative transcriptional control during the cell cycle. Mol. Cell. Biol. 16:3789–3798.
  • Hurford, R. K. J., D. Cobrinik, M.-H. Lee, and J. Dyson 1997. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11:1447–1463.
  • Iavarone, A., and J. Massagué 1999. E2F and histone deacetylase mediate transforming growth factor β repression and cdc25A during keratinocyte cell cycle arrest. Mol. Cell. Biol. 19:916–922.
  • Jacks, T., A. Fazeli, E. Schmitt, R. Bronson, M. Goodell, and J. Weinberg 1992. Effects of an Rb mutation in the mouse. Nature 359:295–300.
  • Jinno, S., K. Suto, A. Nagata, M. Igarashi, Y. Kanaoka, H. Nojima, and J. Okayama 1994. Cdc25A is a novel phosphatase functioning early in the cell cycle. EMBO J. 13:1549–1556.
  • Johnson, D. G., K. Ohtani, and J. Nevins 1994. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 8:1514–1525.
  • Johnson, D. G., J. K. Schwarz, W. D. Cress, and J. Nevins 1993. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365:349–352.
  • Kakizuka, A., B. Sebastian, U. Borgmeyer, I. Hermans-Borgmeyer, J. Bolado, T. Hunter, M. F. Hoekstra, and J. Evans 1992. A mouse cdc25 homolog is differentially and developmentally expressed. Genes Dev. 6:578–590.
  • Knoblich, J. A., K. Sauer, L. Jones, H. Richardson, R. Saint, and J. Lehner 1994. Cyclin E controls S phase progression and its downregulation during Drosophila embryogenesis is required for the arrest of cell proliferation. Cell 77:107–120.
  • Kowalik, T. F., J. DeGregori, G. Leone, L. Jakoi, and J. Nevins 1998. E2F1-specific induction of apoptosis and p53 accumulation which is blocked by MDM2. Cell Growth Differ. 9:113–118.
  • Kowalik, T. F., J. DeGregori, J. K. Schwarz, and J. Nevins 1995. E2F1 overexpression in quiescent fibroblasts leads to induction of cellular DNA synthesis and apoptosis. J. Virol. 69:2491–2500.
  • Lam, E. W.-F., and J. Watson 1993. An E2F-binding site mediates cell-cycle regulated repression of mouse B-myb transcription. EMBO J. 12:2705–2713.
  • Lee, E. Y.-H. P., C.-Y. Chang, N. Hu, Y.-C. J. Wang, C.-C. Lai, K. Herrup, W.-H. Lee, and J. Bradley 1992. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294.
  • Lee, E. Y.-H. P., N. Hu, S.-S. F. Yuan, L. A. Cox, A. Bradley, W.-H. Lee, and J. Herrup 1994. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8:2008–2021.
  • Lees, J. A., M. Saito, M. Vidal, M. Valentine, T. Look, E. Harlow, N. Dyson, and J. Helin 1993. The retinoblastoma protein binds to a family of E2F transcription factors. Mol. Cell. Biol. 13:7813–7825.
  • Leone, G., J. DeGregori, Z. Yan, L. Jakoi, S. Ishida, R. S. Williams, and J. Nevins 1998. E2F3 activity is regulated during the cell cycle and is required for the induction of S phase. Genes Dev. 12:2120–2130.
  • Levine, A. J. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Littlewood, T. D., D. C. Hancock, P. S. Daniellan, M. G. Parker, and J. Evan 1995. A modified oestrogen receptor ligand-binding domain as an improved switch for the regulation of heterologous proteins. Nucleic Acids Res. 23:1686–1690.
  • Lukas, J., B. O. Petersen, K. Holm, J. Bartek, and J. Helin 1996. Deregulated expression of E2F family members induces S-phase entry and overcomes p16INK4A-mediated growth suppression. Mol. Cell. Biol. 16:1047–1057.
  • Macleod, K. F., Y. Hu, and J. Jacks 1996. Loss of Rb activates both p53-dependent and independent cell death pathways in the developing mouse nervous system. EMBO J. 15:6178–6188.
  • Matsushime, H., M. F. Roussel, R. A. Ashmun, and J. Sherr 1991. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65:701–713.
  • Means, A. L., J. E. Slansky, S. L. McMahon, M. W. Knuth, and J. Farnham 1992. The HIP1 binding site is required for growth regulation of the dihydrofolate reductase gene promoter. Mol. Cell. Biol. 12:1054–1063.
  • Morgenbesser, S. D., B. O. Williams, T. Jacks, and J. DePinho 1994. p53-dependent apoptosis produced by pRb-deficiency in the developing mouse lens. Nature 371:72–74.
  • Morgenstern, J., and J. Land 1990. Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18:3587–3596.
  • Müller, H. Unpublished data.
  • Müller, H., M. C. Moroni, E. Vigo, B. O. Petersen, J. Bartek, and J. Helin 1997. Induction of S-phase entry by E2F transcription factors depends on their nuclear localization. Mol. Cell. Biol. 17:5508–5520.
  • Müller, H., B. O. Petersen, J. Lukas, and K. Helin. Unpublished data.
  • Neuman, E., E. K. Flemington, W. R. Sellers, W. G. Kaelin Jr.. 1994. Transcription of the E2F-1 gene is rendered cell cycle dependent by E2F DNA-binding sites within its promoter. Mol. Cell. Biol. 14:6607–6615 (Authors’ correction, 15:4660, 1995.)
  • Nicoletti, I., G. Migliorati, M. C. Pagliacci, F. Grignani, and J. Riccardi 1991. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Methods 139:271–279.
  • Ohtani, K., J. DeGregori, G. Leone, D. R. Herendeen, T. J. Kelly, and J. Nevins 1996. Expression of the HsOrc1 gene, a human ORC1 homolog, is regulated by cell proliferation via the E2F transcription factor. Mol. Cell. Biol. 16:6977–6984.
  • Ohtani, K., J. DeGregori, and J. Nevins 1995. Regulation of the cyclin E gene by transcription factor E2F1. Proc. Natl. Acad. Sci. USA 92:12146–12150.
  • Ohtani, K., A. Tsujimoto, M. Ikeda, and J. Nakamura 1998. Regulation of cell growth-dependent expression of mammalian CDC6 gene by the cell cycle transcription factor E2F. Oncogene 17:1777–1785.
  • Ohtsubo, M., and J. Roberts 1993. Cyclin-dependent regulation of G1 in mammalian fibroblasts. Science 259:1908–1912.
  • Ohtsubo, M., A. M. Theodoras, J. Schumacher, J. M. Roberts, and J. Pagano 1995. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15:2612–2624.
  • Pazin, M. J., and J. Kadonaga 1997. What’s up and down with histone deacetylation and transcription? Cell 89:325–328.
  • Pearson, B. E., H.-P. Nasheuer, and J. Wang 1991. Human DNA polymerase α gene: sequences controlling expression in cycling and serum-stimulated cells. Mol. Cell. Biol. 11:2081–2095.
  • Petersen, B. O., and K. Helin. Unpublished results.
  • Philips, A., X. Huet, A. Plet, L. L. Cam, A. Vié, and J. Blanchard 1998. The retinoblastoma protein is essential for cyclin A repression in quiescent cells. Oncogene 16:1373–1381.
  • Phillips, A. C., S. Bates, K. M. Ryan, K. Helin, and J. Vousden 1997. Induction of DNA synthesis and apoptosis are separable functions of E2F-1. Genes Dev. 11:1853–1863.
  • Picard, D., S. J. Salser, and J. Yamamoto 1988. A movable and regulable inactivation function within the steroid binding domain of the glucocorticoid receptor. Cell 54:1073–1080.
  • Prosperini, E., E. Vigo, and K. Helin. Unpublished results.
  • Qin, X.-Q., D. M. Livingston, M. Ewen, W. R. Sellers, Z. Arany, W. G. Kaelin Jr.. 1995. The transcription factor E2F-1 is a downstream target for RB action. Mol. Cell. Biol. 15:742–755.
  • Qin, X.-Q., D. M. Livingston, W. G. Kaelin, and J. Adams 1994. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. Natl. Acad. Sci. USA 91:10918–10922.
  • Quelle, D. E., F. Zindy, R. A. Ashmun, and J. Sherr 1995. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000.
  • Reichmann, E., H. Schwarz, E. M. Deiner, I. Leitner, M. Eilers, J. Berger, M. Busslinger, and J. Beug 1992. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 71:1103–1116.
  • Resnitzky, D., M. Gossen, H. Bujard, and J. Reed 1994. Acceleration of the G1/S phase transition by expression of cyclins D1 and E with an inducible system. Mol. Cell. Biol. 14:1669–1679.
  • Resnitzky, D., L. Hengst, and J. Reed 1995. Cyclin A-associated kinase activity is rate limiting for entrance into S phase and is negatively regulated in G1 by p27Kip1. Mol. Cell. Biol. 15:4347–4352.
  • Robertson, K. D., and J. Jones 1998. The human ARF cell cycle regulatory gene promoter is a CpG island which can be silenced by DNA methylation and down-regulated by wild-type p53. Mol. Cell. Biol. 18:6457–6473.
  • Rosenblatt, J., Y. Gu, and J. Morgan 1992. Human cyclin-dependent kinase 2 is activated during the S and G2 phases of the cell cycle and associate with cyclin A. Proc. Natl. Acad. Sci. USA 89:2824–2828.
  • Samuels, M. L., M. J. Weber, J. M. Bishop, and J. McMahon 1993. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human Raf-1 protein kinase. Mol. Cell. Biol. 13:6241–6252.
  • Schulze, A., K. Zerfass, D. Spitkovsky, S. Middendorp, J. Berges, K. Helin, P. Jansen Dürr, and J. Henglein 1995. Cell cycle regulation of the cyclin A gene promoter is mediated by a variant E2F site. Proc. Natl. Acad. Sci. USA 92:11264–11268.
  • Sears, R., K. Ohtani, and J. Nevins 1997. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol. Cell. Biol. 17:5227–5235.
  • Shan, B., and J. Lee 1994. Deregulated expression of E2F-1 induces S-phase entry and leads to apoptosis. Mol. Cell. Biol. 14:8166–8173.
  • Sherr, C. J. 1996. Cancer cell cycles. Science 274:1672–1677.
  • Sherr, C. J. 1998. Tumor surveillance via ARF-p53 pathway. Genes Dev. 12:2984–2991.
  • Slansky, J. E., Y. Li, W. G. Kaelin, and J. Farnham 1993. A protein synthesis-dependent increase in E2F1 mRNA correlates with growth regulation of the dihydrofolate reductase promoter. Mol. Cell. Biol. 13:1610–1618.
  • Slansky, J. E., and J. Farnham 1996. Introduction to the E2F family: protein structure and gene regulation. Curr. Top. Microbiol. Immunol. 208:1–30.
  • Thalmeier, K., H. Synovzik, R. Mertz, E.-L. Winnacker, and J. Lipp 1989. Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter. Genes Dev. 3:527–536.
  • Tommasi, S., and J. Pfeifer 1995. In vivo structure of the human cdc2 promoter: release of a p130–E2F-4 complex from sequences immediately upstream of the transcription initiation site coincides with induction of cdc2 expression. Mol. Cell. Biol. 15:6901–6913.
  • Tsai, K. Y., Y. Hu, K. F. Macleod, D. Crowley, L. Yamasaki, and J. Jacks 1998. Mutation of E2F1 suppresses apoptosis and inappropriate S-phase entry and extends survival of Rb-deficient mouse embryos. Mol. Cell 2:293–304.
  • Tsai, L.-H., E. Lees, B. Faha, E. Harlow, and J. Riabowol 1993. The cdk2 kinase is required for the G1-to-S transition in mammalian cells. Oncogene 8:1593–1602.
  • Vigo, E., and K. Helin. Unpublished results.
  • Weinberg, R. A. 1995. The retinoblastoma protein and cell cycle control. Cell 81:323–330.
  • Wu, W., Y.-H. Fan, B. L. Kemp, G. Walsh, and J. Mao 1998. Overexpression of cdc25A and cdc25B is frequent in primary non-small cell lung cancer but is not associated with overexpression of c-myc. Cancer Res. 58:4082–4085.
  • Wu, X., and J. Levine 1994. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl. Acad. Sci. USA 91:3602–3606.
  • Yamasaki, L., R. Bronson, B. O. Williams, N. J. Dyson, E. Harlow, and J. Jacks 1998. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb+/− mice. Nat. Genet. 18:360–364.
  • Yan, Z., J. DeGregori, R. Shohet, G. Leone, B. Stillman, J. R. Nevins, and J. Williams 1998. Cdc6 is regulated by E2F and is essential for DNA replication in mammalian cells. Proc. Natl. Acad. Sci. USA 95:3063–3068.
  • Zhu, L., S. van den Heuvel, K. Helin, A. Fattaey, M. Ewen, D. Livingston, N. Dyson, and J. Harlow 1993. Inhibition of cell proliferation by p107, a relative of the retinoblastoma protein. Genes Dev. 7:1111–1125.
  • Zhu, L., L. Zhu, E. Xie, and J. Chang 1995. Differential roles of two tandem E2F sites in repression of the human p107 promoter by retinoblastoma and p107 proteins. Mol. Cell. Biol. 15:3552–3562.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.