28
Views
149
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Methylation-Mediated Transcriptional Silencing in Euchromatin by Methyl-CpG Binding Protein MBD1 Isoforms

, , , , , & show all
Pages 6415-6426 | Received 16 Feb 1999, Accepted 31 May 1999, Published online: 27 Mar 2023

REFERENCES

  • Antequera, F., and J. Bird 1993. Number of CpG islands and genes in human and mouse. Proc. Natl. Acad. Sci. USA 90:11995–11999.
  • Ballabio, A., and J. Willard 1992. Mammalian X-chromosome inactivation and the XIST gene. Curr. Opin. Genet. Dev. 2:439–447.
  • Bartolomei, M. S., and J. Tilghman 1997. Genomic imprinting in mammals. Annu. Rev. Genet. 31:493–525.
  • Baylin, S. B., J. G. Herman, J. R. Graff, P. M. Vertino, and J. Issa 1998. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72:141–196.
  • Bergman, Y., and J. Mostoslavsky 1998. DNA demethylation: turning genes on. Biol. Chem. 379:401–407.
  • Bestor, T. H. 1992. Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J. 11:2611–2617.
  • Bestor, T. H., and J. Verdine 1994. DNA methyltransferases. Curr. Opin. Cell Biol. 6:380–389.
  • Bird, A. P. 1995. Gene number, noise reduction and biological complexity. Trends Genet. 11:94–100.
  • Boyes, J., and J. Bird 1991. DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64:1123–1134.
  • Boyes, J., and J. Bird 1992. Repression of genes by DNA methylation depends on CpG density and promoter strength: evidence for involvement of a methyl-CpG binding protein. EMBO J. 11:327–333.
  • Bruhat, A., and J. Jost 1995. In vivo estradiol-dependent dephosphorylation of the repressor MDBP-2-H1 correlates with the loss of in vitro preferential binding to methylated DNA. Proc. Natl. Acad. Sci. USA 92:3678–3682.
  • Bruhat, A., and J. Jost 1996. Phosphorylation/dephosphorylation of the repressor MDBP-2-H1 selectively affects the level of transcription from a methylated promoter in vitro. Nucleic Acids Res. 24:1816–1821.
  • Buschhausen, G., B. Wittig, M. Graessmann, and J. Graessmann 1987. Chromatin structure is required to block transcription of the methylated herpes simplex virus thymidine kinase gene. Proc. Natl. Acad. Sci. USA 84:1177–1181.
  • Courey, A. J., and J. Tjian 1988. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell 55:887–898.
  • Cross, S. H., R. R. Meehan, X. Nan, and J. Bird 1997. A component of the transcriptional repressor MeCP1 shares a motif with DNA methyltransferase and HRX proteins. Nat. Genet. 16:256–259.
  • Feinberg, A. P., S. Rainier, and J. DeBaun 1995. Genomic imprinting, DNA methylation, and cancer. J. Natl. Cancer Inst. Monogr. 1995:21–26.
  • Graff, J. R., J. G. Herman, R. G. Lapidus, H. Chopra, R. Xu, D. F. Jarrard, W. B. Isaacs, P. M. Pitha, N. E. Davidson, and J. Baylin 1995. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55:5195–5199.
  • Heberlein, U., B. England, and J. Tjian 1985. Characterization of Drosophila transcription factors that activate the tandem promoters of the alcohol dehydrogenase gene. Cell 41:965–977.
  • Heiermann, R., and J. Pongs 1985. In vitro transcription with extracts of nuclei of Drosophila embryos. Nucleic Acids Res. 13:2709–2730.
  • Hendrich, B., and J. Bird 1998. Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol. Cell. Biol. 18:6538–6547.
  • Herman, J. G., J. R. Graff, S. Myohanen, B. D. Nelkin, and J. Baylin 1996. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl. Acad. Sci. USA 93:9821–9826.
  • Herman, J. G., F. Latif, Y. Weng, M. I. Lerman, B. Zbar, S. Liu, D. Samid, D. S. Duan, J. R. Gnarra, W. M. Linehan, and J. Baylin 1994. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. Natl. Acad. Sci. USA 91:9700–9704.
  • Holler, M., G. Westin, J. Jiricny, and J. Schaffner 1988. Sp1 transcription factor binds DNA and activates transcription even when the binding site is CpG methylated. Genes Dev. 2:1127–1135.
  • Iguchi-Ariga, S. M. M., and J. Schaffner 1989. CpG methylation of the cAMP responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev. 3:612–619.
  • Jeanpierre, M., C. Turleau, A. Aurias, M. Prieur, F. Ledeist, A. Fischer, and J. Viegas 1993. An embryonic-like methylation pattern of classical satellite DNA is observed in ICF syndrome. Hum. Mol. Genet. 2:731–735.
  • Johnson, D. G., K. Ohtani, and J. Nevins 1994. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 8:1514–1525.
  • Jones, P. L., G. J. Veenstra, P. A. Wade, D. Vermaak, S. U. Kass, N. Landsberger, J. Strouboulis, and J. Wolffe 1998. Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet. 19:187–191.
  • Jost, J. P., and J. Hofsteenge 1992. The repressor MDBP-2 is a member of the histone H1 family that binds preferentially in vitro and in vivo to methylated nonspecific DNA sequences. Proc. Natl. Acad. Sci. USA 89:9499–9503.
  • Kass, S. U., D. Pruss, and J. Wolffe 1997. How does DNA methylation repress transcription? Trends Genet. 13:444–449.
  • Kudo, S. 1998. Methyl-CpG-binding protein MeCP2 represses Sp1-activated transcription of the human leukosialin gene when the promoter is methylated. Mol. Cell. Biol. 18:5492–5499.
  • Lamond, A. I., and J. Earnshaw 1998. Structure and function in the nucleus. Science 280:547–553.
  • Lewis, J. D., R. R. Meehan, W. J. Henzel, F. I. Maurer, P. Jeppesen, F. Klein, and J. Bird 1992. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 69:905–914.
  • Li, E., C. Beard, and J. Jaenisch 1993. Role for DNA methylation in genomic imprinting. Nature 366:362–365.
  • Li, E., T. H. Bestor, and J. Jaenisch 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926.
  • Ma, Q., H. Alder, K. K. Nelson, D. Chatterjee, Y. Gu, T. Nakamura, E. Canaani, C. M. Croce, L. D. Siracusa, and J. Buchberg 1993. Analysis of the murine All-1 gene reveals conserved domains with human ALL-1 and identifies a motif shared with DNA methyltransferases. Proc. Natl. Acad. Sci. USA 90:6350–6354.
  • Makino, K., H. Kuwahara, N. Masuko, Y. Nishiyama, T. Morisaki, J. Sasaki, M. Nakao, A. Kuwano, M. Nakata, Y. Ushio, and J. Saya 1997. Cloning and characterization of NE-dlg: a novel human homolog of the Drosophila discs large (dlg) tumor suppressor protein interacts with the APC protein. Oncogene 14:2425–2433.
  • Meehan, R. R., J. D. Lewis, S. McKay, E. L. Kleiner, and J. Bird 1989. Identification of a mammalian protein that binds specifically to DNA containing methylated CpGs. Cell 58:499–507.
  • Merlo, A., J. G. Herman, L. Mao, D. J. Lee, E. Gabrielson, P. C. Burger, S. B. Baylin, and J. Sidransky 1995. 5′ CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat. Med. 1:686–692.
  • Miller, O. J., W. Schnedl, J. Allen, and J. Erlanger 1974. 5-Methylcytosine localised in mammalian constitutive heterochromatin. Nature 251:636–637.
  • Moroi, Y., C. Peebles, M. J. Fritzler, J. Steigerwald, and J. Tan 1980. Autoantibody to centromere (kinetochore) in scleroderma sera. Proc. Natl. Acad. Sci. USA 77:1627–1631.
  • Nan, X., F. J. Campoy, and J. Bird 1997. MeCP2 is a transcriptional repressor with abundant binding sites in genomic chromatin. Cell 88:471–481.
  • Nan, X., R. R. Meehan, and J. Bird 1993. Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res. 21:4886–4892.
  • Nan, X., H. H. Ng, C. A. Johnson, C. D. Laherty, B. M. Turner, R. N. Eisenman, and J. Bird 1998. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393:386–389.
  • Saurin, A. J., C. Shiels, J. Williamson, D. P. Satijn, A. P. Otte, D. Sheer, and J. Freemont 1998. The human polycomb group complex associates with pericentromeric heterochromatin to form a novel nuclear domain. J. Cell Biol. 142:887–898.
  • Schumacher, A., and J. Magnuson 1997. Murine Polycomb- and trithorax-group genes regulate homeotic pathways and beyond. Trends Genet. 13:167–170.
  • Stein, R., A. Razin, and J. Cedar 1982. In vitro methylation of the hamster adenine phosphoribosyltransferase gene inhibits its expression in mouse L cells. Proc. Natl. Acad. Sci. USA 79:3418–3422.
  • Surralles, J., S. Puerto, M. J. Ramirez, A. Creus, R. Marcos, L. H. Mullenders, and J. Natarajan 1998. Links between chromatin structure, DNA repair and chromosome fragility. Mutat. Res. 404:39–44.
  • Sutcliffe, J. S., M. Nakao, S. Christian, K. H. Orstavik, N. Tommerup, D. H. Ledbetter, and J. Beaudet 1994. Deletions of a differentially methylated CpG island at the SNRPN gene define a putative imprinting control region. Nat. Genet. 8:52–58.
  • Thiagalingam, S., C. Lengauer, F. S. Leach, M. Schutte, S. A. Hahn, J. Overhauser, J. K. Willson, S. Markowitz, S. R. Hamilton, S. E. Kern, K. W. Kinzler, and J. Vogelstein 1996. Evaluation of candidate tumour suppressor genes on chromosome 18 in colorectal cancers. Nat. Genet. 13:343–346.
  • Urieli, S. S., Y. Gruenbaum, J. Sedat, and J. Razin 1982. The absence of detectable methylated bases in Drosophila melanogaster DNA. FEBS Lett. 146:148–152.
  • Weitzel, J. M., H. Buhrmester, and J. Stratling 1997. Chicken MAR-binding protein ARBP is homologous to rat methyl-CpG-binding protein MeCP2. Mol. Cell. Biol. 17:5656–5666.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.