20
Views
59
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Functional Analysis of H-Ryk, an Atypical Member of the Receptor Tyrosine Kinase Family

, &
Pages 6427-6440 | Received 09 Oct 1998, Accepted 25 May 1999, Published online: 27 Mar 2023

REFERENCES

  • Barker, P. A., and J. Murphy 1992. The nerve growth-factor receptor a multi-component system that mediates the actions of the neurotrophin family of proteins. Mol. Cell. Biol. 110:1–15.
  • Barton, G. J. 1993. “ALSCRIPT”—a tool to format multiple sequence alignments. Protein Eng. 6:47–50.
  • Barton, G. J. 1990. Protein multiple sequence alignment and flexible pattern matching. Methods Enzymol. 183:403–428.
  • Bernstein, F. C., T. F. Koetzle, G. J. Williams, E. E. Meyer, M. D. Brice, J. R. Rodgers, O. Kennard, T. Shimanouchi, and J. Tasumi 1977. The Protein Data Bank: a computer-based archival file for macromolecular structures. J. Mol. Biol. 112:535–542.
  • Bonkowsky, J. L., and J. B. Thomas. Personal communication.
  • Branden, C., J. Tooze 1991. Introduction to protein structure. Garland Publishing Inc., New York, N.Y.
  • Callahan, C. A., J. L. Bonkovsky, A. L. Scully, and J. Thomas 1996. derailed is required for muscle attachment site selection in Drosophila. Development 127:2761–2767.
  • Callahan, C. A., M. G. Muralidhar, S. E. Lundgren, A. L. Scully, and J. Thomas 1995. Control of neuronal pathway selection by a drosophila receptor protein-tyrosine kinase family member. Nature 376:171–174.
  • Carraway, K. L., S. P. Soltoff, A. J. Diamonti, and J. Cantley 1995. Heregulin stimulates mitogenesis and phosphatidylinositol 3-kinase in mouse fibroblasts transfected with erbb2/neu and erbb3. J. Biol. Chem. 270:7111–7116.
  • Chen, C., and J. Okayama 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Chen, C., and J. Okayama 1988. A high efficient system for stably transforming cells with plasmid DNA. BioTechniques 6:632–638.
  • Chun, K. T., and J. Goebl 1997. Mutational analysis of Cak1p, an essential protein kinase that regulates cell cycle progression. Mol. Gen. Genet. 256:365–375.
  • Craven, S., and J. Bredt 1998. PDZ proteins organize synaptic signaling pathways. Cell 93:495–498.
  • Duplay, P., M. Thome, F. Herve, and J. Acuto 1994. p56lck interacts via its src homology 2 domain with the ZAP-70 kinase. J. Exp. Med. 179:1163–1172.
  • Enke, D. A., P. Kaldis, J. K. Holmes, and J. Solomon 1999. The CDK-activating kinase (Cak1p) from budding yeast has an unusual ATP-binding pocket. J. Biol. Chem. 274:1949–1956.
  • Fabian, J. R., D. K. Morrison, and J. Daar 1993. Required for Raf and MAP kinase function during the meiotic maturation of Xenopus oocytes. J. Cell Biol. 122:645–652.
  • Fabian, J. R., A. B. Vojtek, J. A. Cooper, and J. Morrison 1994. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc. Natl. Acad. Sci. USA 91:5982–5986.
  • Fedi, P., J. H. Pierce, P. P. di Fiore, and J. Kraus 1994. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol. Cell. Biol. 14:492–500.
  • Gale, N. W., S. J. Holland, D. M. Valenzuela, A. Flenniken, L. Pan, T. E. Ryan, M. Henkemeyer, M. Strebhardt, K. Hirai, and J. Wilkinson 1996. Eph receptors and ligands comprise two major specificity subclasses and are reciprocally compartimentalized during embryogenesis. Neuron 17:8–19.
  • Gibbs, C. S., and J. Zoller 1991. Identification of electrostatic interactions that determine the phosphorylation site specificity of the cAMP-dependent protein kinase. Biochemistry 30:5329–5334.
  • Gough, N. M., S. Rakar, C. M. Hovens, and J. Wilks 1995. Localization of two mouse genes encoding the protein tyrosine kinase receptor-related protein RYK. Mamm. Genome 6:255–256.
  • Gurniak, C. B., and J. Berg 1996. A new member of the Eph family of receptors that lacks protein tyrosine kinase activity. Oncogene 13:777–786.
  • Hanks, S. K., and J. Hunter 1995. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9:576–596.
  • Hanks, S. K., A. M. Quinn, and J. Hunter 1988. Conserved features and deduced phylogeny of the catalytic domains. Science 241:42–52.
  • Hemmer, W., M. McGlone, I. Tsigelny, and J. Taylor 1997. Role of the glycine triad in the ATP-binding site of cAMP-dependent protein kinase. J. Biol. Chem. 272:16946–16954.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and J. Pease 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Holland, S. J., N. W. Gale, G. D. Gish, R. A. Roth, Z. Songyang, L. C. Cantley, M. Henkemeyer, G. D. Yancopoulos, and J. Pawson 1997. Juxtamembrane tyrosine residues couple the Eph family receptor AphB2/Nuk to specific SH2 domain proteins in neuronal cells. EMBO J. 16:3877–3888.
  • Hoskins, R., A. Hajnal, S. Harp, and J. Kim 1996. The C. elegans vulval induction gene lin-2 encodes a member of the MAGUK family of cell junction proteins. Development 122:97–111.
  • Hovens, C. M., S. A. Stacker, A. C. Andres, A. G. Harpur, A. Ziemiecki, and J. Wilks 1992. RYK, a receptor tyrosine kinase-related molecule with unusual kinase domain motifs. Proc. Natl. Acad. Sci. USA 89:11818–11822.
  • Hubbard, S. R. 1997. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16:5572–5581.
  • Hubbard, S. R., L. Wei, L. Ellis, and J. Hendrickson 1994. Crystal structure of the tyrosine kinase domain of the human insulin receptor. Nature 372:746–754.
  • Huber, L. J., and J. Chao 1995. A potential interaction of p75 and Trka NGF receptors revealed by affinity cross-linking and immunoprecipitation. J. Neurosci. Res. 40:557–563.
  • Iwama, A., K. Okano, T. Sudo, Y. Matsuda, and J. Suda 1994. Molecular cloning of a novel receptor tyrosine kinase gene, STK, derived from enriched hematopoietic stem cells. Blood 83:3160–3169.
  • Johnson, L. N., M. E. Noble, and J. Owen 1996. Active and inactive protein kinases: structural basis for regulation. Cell 85:149–158.
  • Kabsch, W., and J. Sander 1983. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637.
  • Katso, R., S. Manek, S. Biddolph, R. Whittaker, F. Charnock, M. Wells, and J. Ganesan 1999. Overexpression of H-Ryk in mouse fibroblasts confers transforming ability in vitro and in vivo: correlation with up-regulation in epithelial ovarian cancer. Cancer Res. 59:2265–2270.
  • Kelman, Z., D. Simon-Chazottes, J. L. Guénet, and J. Yarden 1993. The murine vik gene (chromosome 9) encodes a putative receptor with unique protein kinase motifs. Oncogene 8:37–44.
  • Kim, E., M. Niethammer, A. Rothchild, Y. Jan, and J. Sheng 1995. Clustering of the Shaker-type K+ channels by interaction with a family of membrane associated guanylate kinases. Nature 378:85–88.
  • Klein, R., S. Jing, V. Nanduri, E. O’Rourke, and J. Barbacid 1991. The trk proto-oncogene encodes a receptor for nerve growth factor. Cell 65:189–197.
  • Knighton, D. R., J. Zheng, E. L. F. Ten, V. A. Ashford, N. H. Xuong, S. S. Taylor, and J. Sowadski 1991. Crystal structure of the catalytic subunit of cyclic AMP dependent protein kinase. Science 253:407–414.
  • Larsson-Blomberg, L., and J. Dzierzak 1994. Isolation of tyrosine kinase related genes expressed in the early hematopoietic system. FEBS Lett. 348:119–125.
  • LeSauteur, L., S. Maliartchouk, H. Le Jeune, R. Quirion, and J. Saragovi 1996. Potent human p140-TrkA agonists derived from an anti-receptor monoclonal antibody. J. Neurosci. 16:1308–1316.
  • Maminta, M. L., K. L. Williams, A. Nakagawara, K. T. Enger, C. Guo, G. M. Brodeur, and J. Deuel 1992. Identification of a novel tyrosine kinase receptor-like molecule in neuroblastomas. Biochem. Biophys. Res. Commun. 189:1077–1083.
  • Marshall, C. J. 1994. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr. Opin. Genet. Dev. 4:82–89.
  • Martin-Zanca, D., R. Oskam, G. Mitra, T. Copeland, and J. Barbacid 1989. Molecular and biochemical characterization of the human trk proto-oncogene. Mol. Cell. Biol. 9:24–33.
  • Masiakowski, P., and J. Carroll 1992. A novel family of cell surface receptors with tyrosine kinase-like domain. J. Biol. Chem. 267:26181–26190.
  • Mohammadi, M., J. Schlessinger, and J. Hubbard 1996. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 86:577–587.
  • Moran, M. F., C. A. Koch, I. Sadowski, and J. Pawson 1988. Mutational analysis of a phosphotransfer motif essential for v-fps tyrosine kinase activity. Oncogene 3:665–672.
  • Mossie, K., B. Jallal, F. Alves, I. Sures, G. D. Plowman, and J. Ullrich 1995. Colon carcinoma kinase-4 defines a new subclass of the receptor tyrosine kinase family. Oncogene 11:2179–2184.
  • Mothe, I., S. Tartare, A. Kowalskichauvel, P. Kaliman, E. Vanobberghen, and J. Ballotti 1995. Tyrosine kinase-activity of a chimeric insulin-like-growth-factor-1 receptor-containing the insulin-receptor C-terminal domain—comparison with the tyrosine kinase-activities of the insulin and insulin-like-growth-factor-1 receptors using a cell-free system. Eur. J. Biochem. 228:842–848.
  • Okabayashi, Y., Y. Kido, T. Okutani, Y. Sugimoto, K. Sakaguchi, and J. Kasuga 1994. Tyrosines 1148 and 1173 of activated human epidermal growth factor receptors are binding sites of Shc in intact cells. J. Biol. Chem. 269:18674–18678.
  • Partanen, J., T. P. Makela, R. Alitalo, H. Lehvaslaiho, and J. Alitalo 1990. Putative tyrosine kinases expressed in K-562 human leukemia cells. Proc. Natl. Acad. Sci. USA 87:8913–8917.
  • Paul, S. R., D. Merberg, H. Finnerty, G. E. Morris, J. C. Morris, S. S. Jones, R. Kriz, K. J. Turner, and J. Wood 1992. Molecular cloning of the cDNA encoding a receptor tyrosine kinase-related molecule with a catalytic region homologous to c-met. Int. J. Cell Cloning 10:309–314.
  • Pawson, T., and J. Gish 1992. SH2 and SH3 domains—from structure to function. Cell 71:359–362.
  • Peitsch, M. C. 1995. Protein modelling by E-mail. BioTechnology 13:658–660.
  • Perrimon, N. 1994. Signalling pathways initiated by receptor protein tyrosine kinases in Drosophila. Curr. Opin. Cell Biol. 6:260–266.
  • Ponder, J. W., and J. Richards 1987. Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J. Mol. Biol. 193:775–791.
  • Potworowski, E. F., and J. Beauchemin 1996. Expression of protein tyrosine kinases in the murine thymus stroma. Immunol. Lett. 50:65–69.
  • Pronk, G. J., J. Mcglades, G. Pelicci, T. Pawson, and J. Bos 1993. Insulin-induced phosphorylation of the 46- and 52-kDa Shc proteins. J. Biol. Chem. 268:5748–5753.
  • Ravichandran, K. S., and J. Burakoff 1994. The adapter protein Shc interacts with the interleukin-2 (IL-2) receptor upon IL-2 stimulation. J. Biol. Chem. 269:1599–1602.
  • Reichman, F. M., B. Dickson, E. Hafen, and J. Shilo 1994. Elucidation of the role of breathless, a Drosophila FGF receptor homolog, in tracheal cell migration. Genes Dev. 8:428–439.
  • Russell, R. B., and J. Barton 1992. Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins Struct. Funct. Genet. 14:309–323.
  • Schneider, S., M. Buchert, O. Georgiev, B. Catimel, M. Halford, S. Stacker, T. Baechi, K. Moelling, and J. Hovens 1999. Mutagenesis and selection of PDZ domains that bind new protein targets. Nat. Biotechnol. 17:170–175.
  • Serfas, M. S., and J. Tyner 1998. Ryk is expressed in a differentiation-specific manner in epithelial tissues and is strongly induced in decidualizing uterine stroma. Oncogene 17:3435–3444.
  • Shrivastava, A., C. Radziejewski, E. Campbell, L. Kovac, M. McGglynn, T. Ryan, S. Davis, M. Goldfarb, D. Glass, G. Lemke, and J. Yancopoulos 1997. An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1:25–34.
  • Simoneaux, D. K., F. A. Fletcher, R. Jurecic, H. G. Shilling, N. T. Van, P. Patel, and J. Belmont 1995. The receptor tyrosine kinase-related gene (ryk) demonstrates lineage and stage-specific expression in hematopoietic cells. J. Immunol. 154:1157–1166.
  • Simske, J., S. Kaech, S. Harp, and J. Kim 1996. Let-23 receptor localisation by the cell junction protein LIN-7 during C. elegans vulval induction. Cell 85:195–204.
  • Siyanova, E. Y., M. S. Serfas, I. A. Mazo, and J. Tyner 1994. Tyrosine kinase gene expression in the mouse small intestine. Oncogene 9:2053–2057.
  • Skolnik, E. Y., C. H. Lee, A. Batzer, L. M. Vicentini, M. Zhou, R. Daly, M. J. Myers, J. M. Backer, A. Ullrich, and J. White 1993. The sh2 sh3 domain-containing protein grb2 interacts with tyrosine-phosphorylated irs1 and shc—implications for insulin control of ras signaling. EMBO J. 12:1929–1936.
  • Stacker, S. A., C. M. Hovens, A. Vitali, M. A. Pritchard, E. Baker, G. R. Sutherland, and J. Wilks 1993. Molecular cloning and chromosomal localisation of the human homologue of a receptor related to tyrosine kinases (RYK). Oncogene 8:1347–1356.
  • Stark, K. L., J. A. McMahon, and J. McMahon 1991. FGFR-4, a new member of the fibroblast growth factor receptor family, expressed in the definitive endoderm and skeletal muscle lineages of the mouse. Development 113:641–651.
  • Tamagnone, L., J. Partanen, E. Armstrong, J. Lasota, K. Ohgami, T. Tazunoki, S. LaForgia, K. Huebner, and J. Alitalo 1993. The human ryk cDNA sequence predicts a protein containing two putative transmembrane segments and a tyrosine kinase catalytic domain. Oncogene 8:2009–2014.
  • Taylor, S. S., D. R. Knighton, J. Zheng, J. M. Sowadski, C. S. Gibbs, and J. Zoller 1993. A template for the protein kinase family. Trends Biochem. Sci. 18:84–89.
  • Taylor, W. R. 1986. The classification of amino acid conservation. J. Theor. Biol. 119:205–208.
  • Thompson, J. D., D. G. Higgins, and J. Gibson 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680.
  • Thuret, J. Y., J. G. Valay, G. Faye, and J. Mann 1996. Civ1 (CAK in vivo), a novel Cdk-activating kinase. Cell 86:565–576.
  • Vogel, W., G. D. Gish, F. Alves, and J. Pawson 1997. The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell 1:13–23.
  • Wang, X. C., R. Katso, R. Butler, A. M. Hanby, R. Poulsom, T. Jones, D. Sheer, and J. Ganesan 1996. H-RYK, an unusual receptor kinase: isolation and analysis of expression in ovarian cancer. Mol. Med. 2:189–203.
  • Weiner, H. L., M. Rothman, D. C. Miller, and J. Ziff 1996. Pediatric brain tumors express multiple receptor tyrosine kinases including novel cell adhesion kinases. Pediatr. Neurosurg. 25:64–71.
  • Wilks, A., and J. Harpur 1994. Cytokine signal transduction and the Jak family of protein tyrosine kinases. Bioessays 16:313–319.
  • Wilson, C., C. I. Goberdhan, and J. Steller 1993. Dror, apotential neurotrophic receptor gene, encodes a Drosophila homolog of the vertebrate Ror family of Trk-related receptor tyrosine kinases. Proc. Natl. Acad. Sci. USA 90:7190–7113.
  • Yee, K., T. R. Bishop, C. Mather, and J. Zon 1993. Isolation of a novel receptor tyrosine kinase cDNA expressed by developing erythroid progenitors. Blood 82:1335–1343.
  • Zhao, Y., C. Bjorbaek, and J. Moller 1996. Regulation and interaction of pp90rsk isoforms with mitogen activated protein kinases. J. Biol. Chem. 271:29773–29779.
  • Zhao, Y., C. Bjorbaek, S. Weremowicz, C. Morton, and J. Moller 1995. RSK3 encodes a novel pp90rsk isoform with a unique N-terminal sequence: growth factor-stimulated kinase function and nuclear translocation. Mol. Cell. Biol. 15:4353–4363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.