23
Views
83
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Novel Role for Helix 12 of Retinoid X Receptor in Regulating Repression

, &
Pages 6448-6457 | Received 07 May 1999, Accepted 24 Jun 1999, Published online: 27 Mar 2023

REFERENCES

  • Allan, G. F., X. Leng, S. Y. Tsai, N. L. Weigel, D. P. Edwards, M. J. Tsai, and J. O’Malley 1992. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J. Biol. Chem. 267:19513–19520.
  • Alland, L., R. Muhle, H. Hou, J. Potes, L. Chin, N. Schreiber-Agus, and J. DePinho 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55.
  • Baniahmad, A., A. C. Kohne, and J. Renkawitz 1992. A transferable silencing domain is present in the thyroid hormone receptor, in the v-erbA onco-gene product and in the retinoic acid receptor. EMBO J. 11:1015–1023.
  • Baniahmad, A., X. Leng, T. P. Burris, S. Y. Tsai, M.-J. Tsai, and J. O’Malley 1995. The τ4 activation domain of the thyroid hormone receptor is required for release of a putative corepressor(s) necessary for transcriptional silencing. Mol. Cell. Biol. 15:76–86.
  • Bourguet, W., M. Ruff, P. Chambon, H. Gronemeyer, and J. Moras 1995. Crystal structure of the ligand-binding domain of the human nuclear receptor RXR-alpha. Nature 375:377–382.
  • Brent, G. A., M. K. Dunn, J. W. Harney, T. Gulick, P. R. Larsen, and J. Moore 1989. Thyroid hormone aporeceptor represses T3-inducible promoters and blocks activity of the retinoic acid receptor. New Biol. 1:329–336.
  • Cavailles, V., S. Dauvois, P. S. Danielian, and J. Parker 1994. Interaction of proteins with transcriptionally active estrogen receptors. Proc. Natl. Acad. Sci. USA 91:10009–10013.
  • Chen, J. D., and J. Evans 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457.
  • Chen, J. D., K. Umesono, and J. Evans 1996. SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers. Proc. Natl. Acad. Sci. USA 93:7567–7571.
  • Chen, J.-Y., S. Penco, J. Ostrowski, P. Balaguer, M. Pons, J. E. Starrett, P. Reczek, P. Chambon, and J. Gronmeyer 1995. RAR-specific agonist/antagonists which dissociate transactivation and AP1 transrepression inhibit anchorage-independent cell proliferation. EMBO J. 14:1187–1197.
  • Chen, J. Y., J. Clifford, C. Zusi, J. Starrett, D. Tortolani, J. Ostrowski, P. R. Reczek, P. Chambon, and J. Gronemeyer 1996. Two distinct actions of retinoid-receptor ligands. Nature 382:819–822.
  • Collingwood, T. N., A. Butler, Y. Tone, R. J. Clifton-Bligh, M. G. Parker, and J. Chatterjee 1997. Thyroid hormone-mediated enhancement of heterodimer formation between thyroid hormone receptor β and retinoid X receptor. J. Biol. Chem. 272:13060–13065.
  • Damm, K., C. C. Thompson, and J. Evans 1989. Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature 339:593–597.
  • Danielian, P. S., R. White, J. A. Lees, and J. Parker 1992. Identification of a conserved region required for hormone dependent transcriptional activation by steroid hormone receptors. EMBO J. 11:1025–1033.
  • Darimont, B. D., R. L. Wagner, J. W. Apriletti, M. R. Stallcup, P. J. Kushner, J. D. Baxter, R. J. Fletterick, and J. Yamamoto 1998. Structure and specificity of nuclear receptor-coactivator interactions. Genes Dev. 12:3343–3356.
  • Feng, W., R. C. J. Ribeiro, R. L. Wagner, H. Nguyen, J. W. Apriletti, R. J. Fletterick, J. D. Baxter, P. J. Kushner, and J. West 1998. Hormone-dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280:1747–1749.
  • Gelmetti, V., J. Zhang, M. Fanelli, S. Minucci, P. G. Pelicci, and J. Lazar 1998. Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol. Cell. Biol. 18:7185–7191.
  • Glass, C. K., D. W. Rose, and J. Rosenfeld 1997. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9:222–232.
  • Graupner, G., K. N. Wills, M. Tzukerman, X.-K. Zhang, and J. Pfahl 1989. Dual regulatory role for thyroid-hormone receptors allows control of retinoic-acid receptor activity. Nature 340:653–656.
  • Guex, N., and J. Peitsch 1997. SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723.
  • Halachmi, S., E. Marden, G. Martin, H. MacKay, C. Abbondanza, and J. Brown 1994. Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription. Science 264:1455–1458.
  • Hassig, C. A., and J. Schreiber 1998. Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr. Opin. Chem. Biol. 1:300–308.
  • Heinzel, T., R. M. Lavinsky, T.-M. Mullen, M. Soderstrom, C. D. Laherty, J. Torchia, W.-M. Yuang, G. Brard, S. D. Ngo, J. R. Davie, E. Seto, R. N. Eisenman, D. W. Rose, C. K. Glass, and J. Rosenfeld 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48.
  • Horlein, A. J., A. M. Naar, T. Heinzel, J. Torchia, B. Gloss, R. Kurokawa, A. Ryan, Y. Kamei, M. Soderstrom, C. K. Glass, and J. Rosenfeld 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor. Nature 377:397–404.
  • Hu, X., and M. A. Lazar. Unpublished results.
  • Jeannin, E., D. Robyr, and J. Desvergne 1998. Transcriptional regulatory patterns of the myelin basic protein and malic enzyme genes by the thyroid hormone receptors α1 and β1. J. Biol. Chem. 273:24239–24248.
  • Kadosh, D., and J. Struhl 1998. Targeted recruitment of the Sin3-Rpd3 histone deacetylase complex generates a highly localized domain of repressed chromatin in vivo. Mol. Cell. Biol. 18:5121–5127.
  • Koradi, R., M. Billeter, and J. Wuthrich 1996. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graphics 14:51–55.
  • Kurokawa, R., M. Soderstrom, A. Horlein, S. Halachmi, M. Brown, M. G. Rosenfeld, and J. Glass 1995. Polarity-specific activities of retinoic acid receptors determined by a co-repressor. Nature 377:451–454.
  • Lavinsky, R. M., J. Kristen, H. Thorsten, J. Torchia, T.-M. Mullen, R. Schiff, A. L. Del-Rio, M. Ricote, S. Ngo, J. Gemsch, S. G. Hilsenbeck, C. K. Osborne, C. K. Glass, and J. Rosenfeld 1998. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc. Natl. Acad. Sci. USA 95:2920–2925.
  • Leng, X., J. Blanco, S. Y. Tsai, K. Ozato, B. W. O’Malley, and J. Tsai 1995. Mouse retinoid X receptor contains a separable ligand-binding and transactivation domain in its E region. Mol. Cell. Biol. 15:255–263.
  • Lin, B. C., S. H. Hong, S. Krig, S. M. Yoh, and J. Privalsky 1997. A conformational switch in nuclear hormone receptors is involved in coupling hormone binding to corepressor release. Mol. Cell. Biol. 17:6131–6138.
  • Lin, R. J., L. Nagy, S. Inoue, W. Shao, W. H. Miller, and J. Evans 1998. Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 391:811–814.
  • Lutterbach, B., J. J. Westendorf, B. Linggi, A. Patten, M. Moniwa, J. R. Davie, K. D. Huynh, V. J. Bardwell, R. M. Lavinsky, M. G. Rosenfeld, C. Glass, E. Seto, and J. Hiebert 1998. ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol. Cell. Biol. 18:7176–7184.
  • Mangelsdorf, D. J., and J. Evans 1995. The RXR heterodimers and orphan receptors. Cell 83:841–850.
  • Marks, M. S., P. L. Hallenback, T. Nagata, J. H. Segars, E. Appella, V. M. Nikodem, and J. Ozato 1992. H-2RIIBP (RXRβ) dimerization provides a mechanism for combinatorial diversity in the regulation of retinoic acid and thyroid hormone responsive genes. EMBO J. 11:1419–1435.
  • Martin, B., R. Renkawitz, and J. Muller 1994. Two silencing sub-domains of v-erbA synergize with each other, but not with RXR. Nucleic Acids Res. 22:4899–4905.
  • Nagy, L., H.-Y. Kao, D. Chakvarkti, R. J. Lin, C. A. Hassig, D. E. Ayer, S. L. Schreiber, and J. Evans 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380.
  • Nolte, R. T., G. B. Wisely, S. Westin, J. E. Cobb, M. H. Lambert, R. Kurokawa, M. G. Rosenfeld, T. M. Willson, C. K. Glass, and J. Milburn 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395:137–143.
  • Qi, J.-S., V. Desai-Yajnik, M. E. Greene, B. M. Raaka, and J. Samuels 1995. The ligand-binding domains of the thyroid hormone/retinoid receptor gene subfamily function in vivo to mediate heterodimerization, gene silencing, and transactivation. Mol. Cell. Biol. 15:1817–1825.
  • Rastinejad, F., T. Perlmann, R. M. Evans, and J. Sigler 1995. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375:203–211.
  • Reginato, M. J., S. T. Bailey, S. L. Krakow, C. Minami, S. Ishii, and J. Takaka 1998. A potent antidiabetic thiazolidinedione with unusual PPARγ-activating properties. J. Biol. Chem. 273:32679–32684.
  • Renaud, J.-P., N. Rochel, M. Ruff, V. Vivat, P. Chambon, H. Gronemeyer, and J. Moras 1995. Crystal structure of the RARγ ligand-binding domain bound to all-trans retinoic acid. Nature 378:681–689.
  • Sande, S., and J. Privalsky 1996. Identification of TRACs, a family of co-factors that associate with and modulate the activity of nuclear hormone receptors. Mol. Endocrinol. 10:813–825.
  • Schulman, I. G., H. Juguilon, and J. Evans 1996. Activation and repression by nuclear hormone receptors: hormone modulates an equilibrium between active and repressive states. Mol. Cell. Biol. 16:3807–3813.
  • Schulman, I. G., C. Li, J. W. R. Schwabe, and J. Evans 1997. The phantom ligand effect: allosteric control of transcription by the retinoid X receptor. Genes Dev. 11:299–308.
  • Schulman, I. G., G. Shao, and J. Heyman 1998. Transactivation by retinoid X receptor-peroxisome proliferator-activated receptor γ (PPARγ) heterodimers: intermolecular synergy requires only the PPARγ hormone-dependent activation function. Mol. Cell. Biol. 18:3483–3494.
  • Seol, W., H. S. Choi, and J. Moore 1995. Isolation of proteins that interact specifically with the retinoid X receptor: two novel orphan receptors. Mol. Endocrinol. 9:72–85.
  • Seol, W., M. J. Mahon, Y.-K. Lee, and J. Moore 1996. Two receptor interacting domains in the nuclear hormone receptor corepressor RIP13/N-CoR. Mol. Endocrinol. 10:1646–1655.
  • Shao, D., S. M. Rangwala, S. T. Bailey, S. L. Krakow, M. J. Reginato, and J. Lazar 1998. Interdomain communication regulating PPARγ ligand binding. Nature 396:377–380.
  • Shibata, H., T. E. Spencer, S. A. Onate, G. Jenster, S. Y. Tsai, M. J. Tsai, and J. O’Malley 1997. Role of co-activators and co-repressors in the mechanism of steroid/thyroid receptor action. Rec. Prog. Horm. Res. 52:141–164.
  • Tagami, T., and J. Jameson 1998. Nuclear corepressors enhance the dominant negative activity of mutant receptors that cause resistance to thyroid hormone. Endocrinology 139:640–650.
  • Tanenbaum, D. M., Y. Wang, S. P. Williams, and J. Sigler 1998. Crystallographic comparison of the estrogen and progesterone receptor’s ligand binding domains. Proc. Natl. Acad. Sci. USA 95:5998–6003.
  • Umesono, K., K. K. Murakami, C. C. Thompson, and J. Evans 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266.
  • Uppenberg, J., S. Svensson, M. Jaki, G. Bertilsson, L. Jendeberg, and J. Berkenstam 1998. Crystal structure of the ligand binding domain of the human nuclear receptor PPARγ. J. Biol. Chem. 273:31108–31112.
  • Vivat, V., C. Zechel, J. M. Wurtz, W. Bourguet, H. Kagechika, H. Umemiya, K. Shudo, D. Moras, H. Gronemeyer, and J. Chambon 1997. A mutation mimicking ligand-induced conformational change yields a constitutive RXR that senses allosteric effects in heterodimers. EMBO J. 16:5697–5709.
  • Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and J. Fletterick 1995. A structural role for hormone in the thyroid hormone receptor. Nature 378:690–697.
  • Wang, J., T. Hoshino, R. L. Redner, S. Kajigaya, and J. Liu 1998. ETO, fusion partner in t(8;21) acute myeloid leukemia, represses transcription by interaction with the human N-CoR/mSin3/HDAC1 complex. Proc. Natl. Acad. Sci. USA 95:10860–10865.
  • Westin, S., R. Kurokawa, R. T. Nolte, G. B. Wisely, E. M. McInerney, D. W. Rose, M. V. Milburn, M. G. Rosenfeld, and J. Glass 1998. Interactions controlling the assembly of nuclear receptor heterodimers and co-activators. Nature 395:199–202.
  • Willy, P. J., K. Umesono, E. S. Ong, R. M. Evans, R. A. Heyman, and J. Mangelsdorf 1995. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 9:1033–1045.
  • Wong, C.-W., and J. Privalsky 1998. Transcriptional silencing is defined by isoform- and heterodimer-specific interactions between nuclear hormone receptors and corepressors. Mol. Cell. Biol. 18:5724–5733.
  • Wurtz, J. M., W. Bourguet, J. P. Renaud, V. Vivat, P. Chambon, D. Moras, and J. Gronemeyer 1996. A canonical structure for the ligand binding domain of nuclear receptors. Nat. Struct. Biol. 3:87–94.
  • Zamir, I., J. Dawson, R. M. Lavinsky, C. K. Glass, M. G. Rosenfeld, and J. Lazar 1997. Cloning and characterization of a corepressor and potential component of the nuclear hormone receptor repression complex. Proc. Natl. Acad. Sci. USA 94:14400–14405.
  • Zamir, I., H. P. Harding, G. B. Atkins, A. Horlein, C. K. Glass, M. G. Rosenfeld, and J. Lazar 1996. A nuclear hormone receptor corepressor mediates transcriptional silencing by receptors with different repression domains. Mol. Cell. Biol. 16:5458–5465.
  • Zamir, I., J. Zhang, and J. Lazar 1997. Stoichiometric and steric principles governing repression by nuclear hormone receptors. Genes Dev. 11:835–846.
  • Zechel, C., X. Q. Shen, P. Chambon, and J. Gronemeyer 1994. Dimerization interfaces formed between the DNA binding domains determine the cooperative binding of RXR/RAR and RXR/TR heterodimers to DR5 and DR4 elements. EMBO J. 13:1414–1424.
  • Zhang, J., I. Zamir, and J. Lazar 1997. Differential recognition of liganded and unliganded thyroid hormone receptor by retinoid X receptor regulates transcriptional repression. Mol. Cell. Biol. 17:6887–6897.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.