1
Views
190
CrossRef citations to date
0
Altmetric
Cell Growth and Development

The Phosphoinositide 3-OH Kinase/AKT2 Pathway as a Critical Target for Farnesyltransferase Inhibitor-Induced Apoptosis

, , , , , & show all
Pages 139-148 | Received 21 Jun 1999, Accepted 20 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Ahmed, N. N., Franke, T. F., Bellacosa, A., Datta, K., Gonzalez-Portal, M.-E., Taguchi, T., Testa, J. R., and Tsichlis, P. N.. 1993. The proteins encoded by c-akt and v-akt differ in post-translational modification, subcellular localization and oncogenic potential. Oncogene 8:1957–1963
  • Alessi, D. R., Andjelkovic, M., Caudwell, B., Cron, P., Morrice, N., Cohen, P., and Hemmings, B. A.. 1996. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15:6541–6551
  • Alessi, D. R., and Cohen, P.. 1998. Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev. 8:55–62
  • Altomare, D. A., Lyons, G. E., Mitsuuchi, Y., Cheng, J. Q., and Testa, J. R.. 1998. Akt2 mRNA is highly expressed in embryonic brown fat and the AKT2 kinase is activated by insulin. Oncogene 16:2407–2411
  • Aman, M. J., Lamkin, T. D., Okada, H., Kurosaki, T., and Ravichandran, K. S.. 1998. The inositol phosphatase SHIP inhibits Akt/PKB activation in B cells. J. Biol. Chem. 273:33922–33928
  • Barthel, A., Nakatani, K., Dandekar, A. A., and Roth, R. A.. 1998. Protein kinase C modulates the insulin-stimulated increase in Akt1 and Akt3 activity in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun. 243:509–513
  • Bellacosa, A., Feo, D., Godwin, A. K., Bell, D. W., Cheng, J. Q., Altomare, D., Wan, M., Dubeau, L., Scambia, G., Masciullo, V., Ferrandina, G., Panici, P. B., Mancuso, S., Neri, G., and Testa, J. R.. 1995. Molecular alteration of the AKT2 oncogene in ovarian and breast carcinomas. Int. J. Cancer 64:280–285
  • Bellacosa, A., Testa, J. R., Staal, S. P., and Tsichlis, P. N.. 1991. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science 254:274–277
  • Berra, E., Diaz-Meco, M. T., and Moscat, J.. 1998. The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J. Biol. Chem. 273:10792–10797
  • Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E.. 1999. Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor. Cell 96:857–868
  • Burgering, B. M. T., and Coffer, P. J.. 1995. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376:599–602
  • Cardone, M. H., Roy, N., Stennicke, H. R., Salvesen, G. S., Franke, T. F., Stanbridge, E., Frisch, S., and Reed, J. C.. 1998. Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321
  • Chang, H. W., Aoki, M., Fruman, D., Auger, K. R., Bellacosa, A., Tsichlis, P. N., Cantley, L. C., Roberts, T. M., and Vogt, P. K.. 1997. Transformation of chichen cells by the gene encoding the catalytic subunit of PI 3-kinase. Science 276:1848–1850
  • Chen, H. C., Appeddu, P. A., Isoda, H., and Guan, J. L.. 1996. Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J. Biol. Chem. 271:26329–26334
  • Cheng, J. Q., Godwin, A. K., Bellacosa, A., Taguchi, T., Franke, T. F., Hamilton, T. C., Tsichlis, P. N., and Testa, J. R.. 1992. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc. Natl. Acad. Sci. USA 89:9267–9271
  • Cheng, J. Q., Ruggeri, B., Klein, W. M., Sonoda, G., Altomare, D. A., Watson, D. K., and Testa, J. R.. 1996. Amplification of AKT2 in human pancreatic cancer cells and inhibition of AKT2 expression and tumorigenicity by antisense RNA. Proc. Natl. Acad. Sci. USA 93:3636–3641
  • Cheng, J. Q., Altomare, D. A., Klein, W. M., Lee, W-C., Kruh, G. D., Lissy, N. A., and Testa, J. R.. 1997. Transforming activity and mitosis-dependent expression of the AKT2 oncogene: evidence suggesting a link between cell cycle regulation and oncogenesis. Oncogene 14:2793–2801
  • Choquet, D., Felsenfeld, D. P., and Sheetz, M. P.. 1997. Extracellular matrix rigidity causes strengthening of integrin-cytoskeleton linkages. Cell 88:39–48
  • Cox, A. D., and Der, C. J.. 1997. Farnesyltransferase inhibitors and cancer treatment: targeting simply Ras? Biochim. Biophys. Acta 1333:F51–F71
  • Cross, D. A. E., Alessi, D. R., Cohen, P., Andjelkovich, M., and Hemmings, B. A.. 1995. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785–789
  • Datta, K., Bellacosa, A., Chan, T. O., and Tsichlis, P. N.. 1996. Akt is a direct target of the phosphatidylinositol 3-kinase. J. Biol. Chem. 271:30835–30839
  • Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y., and Greenberg, M. E.. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241
  • Delcommenne, M., Tan, C., Gray, V., Rue, L., Woodgett, J., and Dedhar, S.. 1998. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. USA 95:11211–11216
  • del Peso, L., Gonzalez-Garcia, M., Page, C., Herrera, R., and Nunez, G.. 1997. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278:687–689
  • Diehl, J. A., Cheng, M. G., Roussel, M. F., and Sherr, C. J.. 1998. Glycogen synthase kinase 3β regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12:3499–3511
  • Du, W., Lebowitz, P. F., and Prendergast, G. C.. 1999. Cell growth inhibition by farnesyltransferase inhibitors is mediated by gain of geranylgeranylated RhoB. Mol. Cell. Biol. 19:1831–1840
  • Franke, T. F., Yang, S. L., Chan, T. O., Datta, K., Kazlauskas, A., Morrison, D. K., Kaplan, D. R., and Tsichlis, P. N.. 1995. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81:727–736
  • Gibbs, J. B., and Oliff, A.. 1997. The potential of farnesyltransferase inhibitors as cancer chemotherapeutics. Annu. Rev. Pharmacol. Toxicol. 37:143–166
  • Hannigan, G. E., Leung-Hagesteijn, C., Fitz-Gibbon, L., Coppolino, M. G., Radeva, G., Filmus, J., Bell, J. C., and Dedhar, S.. 1996. Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase. Nature 379:91–96
  • He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., Morin, P. J., Vogelstein, B., and Kinzler, K. W.. 1998. Identification of c-MYC as a target of the APC pathway. Science 28:1509–1512
  • Howe, A., Aplin, A. E., Alahari, S. K., and Juliano, R. L.. 1998. Integrin signaling and cell growth control. Curr. Opin. Cell Biol. 10:220–231
  • Jimenez, C., Jones, D. R., Rodriguez-Viciana, P., Gonzalez-Garcia, A., Leonardo, E., Wennstrom, S., von Kobbe, C., Toran, J. L., Borlado, L. R-, Calvo, V., Copin, S. G., Albar, J. P., Gaspar, M. L., Diez, E., Marcos, M. A., Downward, J., Martinez-A, C., Merida, I., and Carrera, A. C.. 1998. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J. 17:743–753
  • Jones, P. F., Jakubowicz, T., Pitossi, F. J., Maurer, F., and Hemmings, B. A.. 1991. Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc. Natl. Acad. Sci. USA 88:4171–4175
  • Jones, P. F., Jakubowicz, T., and Hemmings, B. A.. 1991. Molecular cloning of a second form of rac protein kinase. Cell Regul. 2:1001–1009
  • Jung, Y. K., Miura, M., and Yuan, J.. 1996. Suppression of interleukin-1β-converting enzyme-mediated cell death by insulin-like growth factor. J. Biol. Chem. 271:5112–5117
  • Keely, P. J., Westwick, J. K., Whitehead, I. P., Der, C. J., and Parise, L. V.. 1997. Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390:632–636
  • Khosravi-Far, R., Solski, P. A., Clark, G. J., Kinch, M. S., and Der, C. J.. 1995. Activation of Rac1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15:6443–6453
  • Khwaja, A., Rodriguez-Viciana, P., Wennstrom, S., Warne, P. H., and Downward, J.. 1997. Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. EMBO J. 16:2783–2793
  • King, W. G., Mattaliano, M. D., Chan, T. O., Tsichlis, P. N., and Brugge, J. S.. 1997. Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol. 17:4406–4418
  • Klippel, A., Escobedo, J. A., Hu, Q., and Williams, L. T.. 1993. A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo. Mol. Cell. Biol. 13:5560–5566
  • Klippel, A., Escobedo, M. A., Wachowicz, M. S., Apell, G., Brown, T. W., Giedlin, M. A., Kavanaugh, W. M., and Williams, L. T.. 1998. Activation of phosphatidylinositol 3-kinase is sufficient for cell cycle entry and promotes cellular changes characteristic of oncogenic transformation. Mol. Cell. Biol. 18:5699–5711
  • Konishi, H., Kuroda, S., Tanaca, M., Ono, Y., Kameyama, K., Haga, T., and Kikkawa, U.. 1995. Molecular cloning and characterization of a new member of the Rac protein kinase family: association of the pleckstrin homology domain of three types of Rac protein kinase with protein kinase C subspecies and βγ subunits of G proteins. Biochem. Biophys. Res. Commun. 216:526–534
  • Lebowitz, P. F., Davide, J. P., and Prendergast, G. C.. 1995. Evidence that farnesyltransferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol. Cell. Biol. 15:6613–6622
  • Lebowitz, P. F., Sakamuro, D., and Prendergast, G. C.. 1997. Farnesyl transferase inhibitors induce apoptosis of Ras-transformed cells denied substratum attachment. Cancer Res. 57:708–713
  • Le Good, J. A., Ziegler, W. H., Parekh, D. B., Alessi, D. R., Cohen, P., and Parker, P. J.. 1998. Protein kinase C isotypes controlled by phosphoinositide 3-kinase through the protein kinase PDK1. Science 281:2042–2045
  • Lerner, E. C., Qian, Y., Blaskovich, M. A., Fossum, R. D., Vogt, A., Sun, J., Cox, A. D., Der, C. J., Hamilton, A. D., and Sebti, S. M.. 1995. Ras CAAX peptidomimetic FTI-277 selectively blocks oncogenic Ras signaling by inducing cytoplasmic accumulation of inactive Ras-Raf complexes. J. Biol. Chem. 270:26802–26806
  • Lerner, E. C., Zhang, T. T., Knowles, D. B., Qian, Y., Hamilton, A. D., and Sebti, S. M.. 1997. Inhibition of the prenylation of K-Ras, but not H- or N-Ras, is highly resistant to CAAX peptidomimetics and requires both a farnesyltransferase and a geranylgeranyltransferase I inhibitor in human tumor cell lines. Oncogene 15:1283–1288
  • Liu, A.-X., Testa, J. R., Hamilton, T. C., Jove, R., Nicosia, S. V., and Cheng, J. Q.. 1998. AKT2, a member of the protein kinase B family, is activated by growth factors, v-Ha-ras, and v-src through phosphatidylinositol 3-kinase in human ovarian epithelial cancer cells. Cancer Res. 58:2973–2977
  • Logan, S. K., Falasca, M., Hu, P., and Schlessinger, J.. 1997. Phosphatidylinositol 3-kinase mediates epidermal growth factor-induced activation of the c-Jun N-terminal kinase signaling pathway. Mol. Cell. Biol. 17:5784–5790
  • Maehama, T., and Dixon, J. E.. 1998. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 273:13375–13378
  • Meier, R., Alessi, D. R., Cron, P., Andjelkovic, M., and Hemmings, B. A.. 1997. Mitogenic activation, phosphorylation, and nuclear translocation of protein kinase Bβ. J. Biol. Chem. 272:30491–30497
  • Miquel, K., Pradines, A., Sun, J., Qian, Y., Hamilton, A. D., Sebti, S. M., and Favre, G.. 1997. GGTI-298 induces G0-G1 block and apoptosis whereas FTI-277 causes G2-M enrichment in A549 cells. Cancer Res. 57:1846–1850
  • Mitsuuchi, Y., Johnson, S. W., Moonblatt, S., and Testa, J. R.. 1998. Translocation and activation of AKT2 in response to stimulation by insulin. J. Cell. Biochem. 70:433–441
  • Miwa, W., Yasuda, J., Murakami, Y., Yashima, K., Sugano, K., Sekine, T., Kono, A., Egawa, S., Yamaguchi, K., Hayashizaki, Y., and Sekiya, T.. 1996. Isolation of DNA sequences amplified at chromosome 19q13.1-q13.2 including the AKT2 locus in human pancreatic cancer. Biochem. Biophys. Res. Commun. 225:968–974
  • Muta, K., and Krantz, S. B.. 1993. Apoptosis of human erythroid colony-forming cells is decreased by stem cell factor and insulin-like growth factor 1 as well as erythropoietin. J. Cell. Physiol. 156:264–271
  • Palecek, S. P., Loftus, J. C., Ginsberg, M. H., Lauffenburger, D. A., and Horwitz, A. F.. 1997. Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385:537–540
  • Porter, A. C., and Vaillancourt, R. R.. 1998. Tyrosine kinase receptor-activated signal transduction pathways which lead to oncogenesis. Oncogene 17:1343–1352
  • Qiu, R. G., Chen, J., Kirn, D., McCormick, F., and Symons, M.. 1995. An essential role for Rac in Ras transformation. Nature 374:457–459
  • Qiu, Y., Robinson, D., Pretlow, T. G., and Kung, H. J.. 1998. Etk/Bmx, a tyrosine kinase with a pleckstrin-homology domain, is an effector of phosphatidylinositol 3′-kinase and is involved in interleukin 6-induced neuroendocrine differentiation of prostate cancer cells. Proc. Natl. Acad. Sci. USA 95:3644–3649
  • Rodriguez-Viciana, P., Warne, P. H., Dhand, R., Vanhaesebroeck, B., Gout, I., Fry, M. J., Waterfield, M. D., and Downward, J.. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532
  • Rodriguez-Viciana, P., Warne, P. H., Khwaja, A., Marte, B. M., Pappin, D., Das, P., Waterfield, M. D., Ridley, A., and Downward, J.. 1997. Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467
  • Ruggeri, B., Huang, L., Wood, M., Cheng, J. Q., and Testa, J. R.. 1998. Amplification and overexpression of the AKT2 oncogene in a subset of human pancreatic ductal adenocarcinoma. Mol. Carcinog. 21:81–86
  • Schaller, M. D., and Parsons, J. T.. 1994. Focal adhesion kinase and associated proteins. Curr. Opin. Cell Biol. 6:705–710
  • Sebti, S. M., and Hamilton, A. D.. 1997. Inhibition of Ras prenylation: a novel approach to cancer chemotherapy. Pharmacol. Ther. 74:103–114
  • Shaw, L. M., Rabinovitz, I., Wang, H. H., Toker, A., and Mercurio, A. M.. 1997. Activation of phosphoinositide 3-OH kinase by the α6β4 integrin promotes carcinoma invasion. Cell 91:949–960
  • Short, S. M., Talbott, G. A., and Juliano, R. L.. 1998. Integrin-mediated signaling events in human endothelial cells. Mol. Biol. Cell 9:1969–1980
  • Stambolic, V., Suzuki, A., de la Pompa, J. L., Brothers, G. M., Mirtsos, C., Sasaki, T., Ruland, J., Penninger, J. M., Siderovski, D. P., and Mak, T. W.. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39
  • Stokoe, D., Stephens, L. R., Copeland, T., Gaffney, P. R., Reese, C. B., Painter, G. F., Holmes, A. B., McCormick, F., and Hawkins, P. T.. 1997. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 277:567–570
  • Sun, J., Qian, Y., Hamilton, A. D., and Sebti, S. M.. 1995. Ras CAAX peptidomimetic FTI 276 selectively blocks tumor growth in nude mice of a human lung carcinoma with K-Ras mutation and p53 deletion. Cancer Res. 55:4243–4247
  • Sun, J., Qian, Y., Hamilton, A. D., and Sebti, S. M.. 1998. Both farnesyltransferase and geranylgeranyltransferase I inhibitors are required for inhibition of oncogenic K-Ras prenylation but each alone is sufficient to suppress human tumor growth in nude mouse xenografts. Oncogene 16:1467–1473
  • Suzuki, N., Urano, J., and Tamanoi, F.. 1998. Farnesyltransferase inhibitors induce cytochrome c release and caspase 3 activation preferentially in transformed cells. Proc. Natl. Acad. Sci. USA 95:15356–15361
  • Van Aelst, L., and D'Souza-Schorey, C.. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322
  • van Weering, D. H., de Rooij, J., Marte, B., Downward, J., Bos, J. L., and Burgering, B. M.. 1998. Protein kinase B activation and lamellipodium formation are independent phosphoinositide 3-kinase-mediated events differentially regulated by endogenous Ras. Mol. Cell. Biol. 18:1802–1811
  • Warne, P. H., Viciana, P. R., and Downward, J.. 1993. Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355
  • Whitman, M., Kaplan, D. R., Schaffhausen, B., Cantley, L., and Roberts, T. M.. 1985. Association of phosphatidylinositol kinase activity with polyoma middle-T competent for transformation. Nature 315:239–242
  • Zha, J., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J.. 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BCL-XL. Cell 87:619–628
  • Zhang, F. L., and Casey, P. J.. 1996. Protein prenylation: molecular mechanisms and functional consequences. Annu. Rev. Biochem. 65:241–269
  • Zhang, Z., Vuori, K., Wang, H., Reed, J. C., and Ruoslahti, E.. 1996. Integrin activation by R-ras. Cell 85:61–69

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.