7
Views
11
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Rsp5, a Ubiquitin-Protein Ligase, Is Involved in Degradation of the Single-Stranded-DNA Binding Protein Rfa1 in Saccharomyces cerevisiae

&
Pages 224-232 | Received 06 Aug 1999, Accepted 23 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Aboussekhra, A., Biggerstaff, M., Shivji, M. K., Vilpo, J. A., Moncollin, V., Podust, V. N., Protic, M., Hubscher, U., Egly, J. M., and Wood, R. D.. 1995. Mammalian DNA nucleotide excision repair reconstituted with purified protein components. Cell 80:859–868
  • Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C.. 1993. A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21:3329–3330
  • Benson, F. E., Baumann, P., and West, S. C.. 1998. Synergistic actions of Rad51 and Rad52 in recombination and DNA repair. Nature 391:401–404
  • Brill, S. J., and Stillman, B.. 1991. Replication factor-A from Saccharomyces cerevisiae is encoded by three essential genes coordinately expressed at S phase. Genes Dev. 5:1589–1600
  • Brill, S. J., and Stillman, B.. 1989. Yeast replication factor-A functions in the unwinding of the SV40 origin of DNA replication. Nature 342:92–95
  • Broker, T., and Lehman, I.. 1971. Branched DNA molecules: intermediates in T4 recombination. J. Mol. Biol. 60:131–149
  • Clark, A. J.. 1971. Toward a metabolic interpretation of genetic recombination of Escherichia coli and its phages. Annu. Rev. Microbiol. 25:438–464
  • Fairman, M. P., Prelich, G., Tsurimoto, T., and Stillman, B.. 1989. Replication of SV40 in vitro using proteins derived from a human cell extract. J. Cell Sci. 12:161–169
  • Fishman-Lobell, J., and Haber, J. E.. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484
  • Fishman-Lobell, J., Rudin, N., and Haber, J. E.. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12:1292–1303
  • Galan, J. M., Moreau, V., Andre, B., Volland, C., and Haguenauer-Tsapis, R.. 1996. Ubiquitination mediated by the Npi1p/Rsp5p ubiquitin-protein ligase is required for endocytosis of the yeast uracil permease. J. Biol. Chem. 271:10946–10952
  • Game, J. C., and Cox, B. S.. 1971. Allelism tests of mutants affecting sensitivity to radiation in yeast and a proposed nomenclature. Mutat. Res. 6:37–55
  • Ghislain, M., Udvardy, A., and Mann, C.. 1993. S. cerevisiae 26S protease mutants arrest cell division in G2/metaphase. Nature 366:358–362
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Hochstrasser, M.. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439
  • Hoffmann, W.. 1985. Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence. J. Biol. Chem. 260:11831–11837
  • Huibregtse, J. M., Scheffner, M., Beaudenon, S., and Howley, P. M.. 1995. A family of proteins structurally and functionally related to the E6-AP ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 92:2563–2567
  • Huibregtse, J. M., Yang, J. C., and Beaudenon, S. L.. 1997. The large subunit of RNA polymerase II is a substrate of the Rsp5 ubiquitin-protein ligase. Proc. Natl. Acad. Sci. USA 94:3656–3661
  • Klein, H. L.. 1988. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics 120:367–377
  • Langle-Rouault, F., and Jacobs, E.. 1995. A method for performing precise alterations in the yeast genome using a recycable selectable marker. Nucleic Acids Res. 23:3079–3081
  • Larionov, V. L., Grishin, A. V., and Smirnov, M. N.. 1980. 3 μm DNA—an extrachromosomal ribosomal DNA in the yeast Saccharomyces cerevisiae. Gene 12:41–49
  • Lin, F. L., Sperle, K., and Sternberg, N.. 1984. Homologous recombination in mouse L cells. Cold Spring Harbor Symp. Quant. Biol. 49:139–149
  • Malone, R. E., and Esposito, R. E.. 1980. The RAD52 gene is required for homothallic interconversion of mating types and spontaneous mitotic recombination in yeast. Proc. Natl. Acad. Sci. USA 77:503–507
  • McDonald, J. P., and Rothstein, R.. 1994. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. Genetics 137:393–405
  • Milne, G. T., and Weaver, D. T.. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7:1755–1765
  • Mortensen, U. H., Bendixen, C., Sunjevaric, I., and Rothstein, R.. 1996. DNA strand annealing is promoted by the yeast Rad52 protein. Proc. Natl. Acad. Sci. USA 93:10729–10734
  • New, J. H., Sugiyama, T., Zaitseva, E., and Kowalczykowski, S. C.. 1998. Rad52 protein stimulates DNA strand exchange by Rad51 and replication protein A. Nature 391:407–410
  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J.. 1983. Genetic applications of yeast transformation with linear and gapped plasmids. Methods Enzymol. 101:228–245
  • Orr-Weaver, T. L., Szostak, J. W., and Rothstein, R. J.. 1981. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78:6354–6358
  • Paques, F., and Haber, J. E.. 1997. Two pathways for removal of nonhomologous DNA ends during double-strand break repair in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:6765–6771
  • Petes, T. D.. 1980. Unequal meiotic recombination within tandem arrays of yeast ribosomal DNA genes. Cell 19:765–774
  • Piper, P. W., Wasserstein, M., Engbaek, F., Kaltoft, K., Celis, J. E., Zeuthen, J., Liebman, S., and Sherman, F.. 1976. Nonsense suppressors of Saccharomyces cerevisiae can be generated by mutation of the tyrosine tRNA anticodon. Nature 262:757–761
  • Resnick, M. A.. 1969. Genetic control of radiation sensitivity in Saccharomyces cerevisiae. Genetics 62:519–531
  • Resnick, M. A., and Martin, P.. 1976. The repair of double-strand breaks in the nuclear DNA of Saccharomyces cerevisiae and its genetic control. Mol. Gen. Genet. 143:119–129
  • Reynolds, R. J., Love, J. D., and Friedberg, E. C.. 1981. Molecular mechanisms of pyrimidine dimer excision in Saccharomyces cerevisiae: excision of dimers in cell extracts. J. Bacteriol. 147:705–708
  • Roberts, S. M., and Winston, F.. 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147:451–465
  • Ronne, H., and Rothstein, R.. 1988. Mitotic sectored colonies: evidence of heteroduplex DNA formation during direct repeat recombination. Proc. Natl. Acad. Sci. USA 85:2696–2700
  • Rose, M. D., Novick, P., Thomas, J. H., Botstein, D., and Fink, G. R.. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243
  • Schiestl, R. H., and Prakash, S.. 1988. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8:3619–3626
  • Seufert, W., Futcher, B., and Jentsch, S.. 1995. Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373:78–81
  • Sherman, F.. Getting started with yeast 194: Academic Press, Inc., San Diego, Calif
  • Shinohara, A., Ogawa, H., and Ogawa, T.. 1992. 1991. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470
  • Shinohara, A., and Ogawa, T.. 1998. Stimulation by Rad52 of yeast Rad51-mediated recombination. Nature 391:404–407
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Smith, J., and Rothstein, R.. 1995. A mutation in the gene encoding the Saccharomyces cerevisiae single-stranded DNA-binding protein Rfa1 stimulates a RAD52-independent pathway for direct-repeat recombination. Mol. Cell. Biol. 15:1632–1641
  • Smith, J., and Rothstein, R.. 1999. An allele of RFA1 suppresses RAD52-dependent double-strand break repair in Saccharomyces cerevisiae. Genetics 151:447–458
  • Streisinger, G., Okada, Y., Emrich, J., Newton, J., Tsugita, A., Terzaghi, E., and Inouye, M.. 1966. Frameshift mutations and the genetic code. Cold Spring Harbor Symp. Quant. Biol. 31:77–84
  • Struhl, K., Stinchcomb, D. T., Scherer, S., and Davis, R. W.. 1979. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc. Natl. Acad. Sci. USA 76:1035–1039
  • Sugiyama, T., New, J. H., and Kowalczykowski, S. C.. 1998. DNA annealing by RAD52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc. Natl. Acad. Sci. USA 95:6049–6054
  • Sun, H., Treco, D., Schultes, N. P., and Szostak, J. W.. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90
  • Sung, P.. 1994. Catalysis of ATP-dependent homologous DNA pairing and strand exchange by yeast RAD51 protein. Science 265:1241–1243
  • Sung, P.. 1997. Function of yeast Rad52 protein as a mediator between replication protein A and the Rad51 recombinase. J. Biol. Chem. 272:28194–28197
  • Sung, P., and Robberson, D. L.. 1995. DNA strand exchange mediated by a RAD51-ssDNA nucleoprotein filament with polarity opposite to that of RecA. Cell 82:453–461
  • Szostak, J. W., and Wu, R.. 1980. Unequal crossing over in the ribosomal DNA of Saccharomyces cerevisiae. Nature 284:426–430
  • Thomas, B. J., and Rothstein, R.. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630
  • Thomas, B. J., and Rothstein, R.. 1989. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123:725–738
  • Tomkinson, A. E., Bardwell, A. J., Bardwell, L., Tappe, N. J., and Friedberg, E. C.. 1993. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature 362:860–862
  • Wang, G., Yang, J., and Huibregtse, J. M.. 1999. Functional domains of the Rsp5 ubiquitin-protein ligase. Mol. Cell. Biol. 19:342–352
  • Watanabe, Y., Irie, K., and Matsumoto, K.. 1995. Yeast RLM1 encodes a serum response factor-like protein that may function downstream of the Mpk1 (Slt2) mitogen-activated protein kinase pathway. Mol. Cell. Biol. 15:5740–5749
  • White, C. I., and Haber, J. E.. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9:663–673
  • Yashiroda, H., Oguchi, T., Yasuda, Y., Toh, E. A., and Kikuchi, Y.. 1996. Bul1, a new protein that binds to the Rsp5 ubiquitin ligase in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:3255–3263
  • Zolladek, T., Tobiasz, A., Vaduva, G., Boguta, M., Martin, N. C., and Hopper, A. K.. 1997. MDP1, a Saccharomyces cerevisiae gene involved in mitochondrial/cytoplasmic protein distribution, is identical to the ubiquitin-protein ligase gene RSP5. Genetics 145:595–603

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.