14
Views
70
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Human TFIID Components TAFII135 and TAFII20 and the Yeast SAGA Components ADA1 and TAFII68 Heterodimerize to Form Histone-Like Pairs

, , , , , & show all
Pages 340-351 | Received 22 Jul 1999, Accepted 28 Sep 1999, Published online: 28 Mar 2023

REFERENCES

  • Apone, L. M., Virbasius, C. A., Holstege, F. C., Wang, J., Young, R. A., and Green, M. R.. 1998. Broad, but not universal, transcriptional requirement for yTAFII17, a histone H3-like TAFII present in TFIID and SAGA. Mol. Cell 2:653–661
  • Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E., and Moudrianakis, E. N.. 1991. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88:10148–10152
  • Arents, G., and Moudrianakis, E. N.. 1993. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc. Natl. Acad. Sci. USA 90:10489–10493
  • Bell, B., and Tora, L.. 1999. Regulation of gene expression by multiple forms of TFIID and other novel TAFII-containing complexes. Exp. Cell Res. 246:11–19
  • Birck, C., Poch, O., Romier, C., Ruff, M., Mengus, G., Lavigne, A. C., Davidson, I., and Moras, D.. 1998. Human TAFII28 and TAFII18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94:239–249
  • Brand, M., Yamamoto, K., Staub, A., and Tora, L.. 1999. Identification of TATA-binding protein-free TAFII-containing complex subunits suggests a role in nucleosome acetylation and signal transduction. J. Biol. Chem. 274:18285–18289
  • Burley, S. K., and Roeder, R. G.. 1996. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65:769–799
  • Burley, S. K., Xie, X., Clark, K. L., and Shu, F.. 1997. Histone-like transcription factors in eukaryotes. Curr. Opin. Struct. Biol. 7:94–102
  • Candau, R., and Berger, S. L.. 1996. Structural and functional analysis of yeast putative adaptors. Evidence for an adaptor complex in vivo. J. Biol. Chem. 271:5237–5245
  • Caron, C., Mengus, G., Dubrowskaya, V., Roisin, A., Davidson, I., and Jalinot, P.. 1997. Human TAFII28 interacts with the human T cell leukemia virus type I Tax transactivator and promotes its transcriptional activity. Proc. Natl. Acad. Sci. USA 9:3662–3667
  • Davidson, I., Romier, C., Lavigne, A. C., Birck, C., Mengus, G., Poch, O., and Moras, D.. 1998. Functional and structural analysis of the subunits of human transcription factor TFIID. Cold Spring Harbor Symp. Quant. Biol. 63:233–241
  • Dikstein, R., Zhou, S., and Tjian, R.. 1996. Human TAFII105 is a cell type-specific TFIID subunit related to hTAFII130. Cell 87:137–146
  • Eisenmann, D. M., Arndt, K. M., Ricupero, S. L., Rooney, J. W., and Winston, F.. 1992. SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev. 6:121–131
  • Gietz, R. D., Schiestl, R. H., Willems, A. R., and Woods, R. A.. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11:355–360
  • Goppelt, A., Stelzer, G., Lottspeich, F., and Meisterernst, M.. 1996. A mechanism for repression of class II gene transcription through specific binding of NC2 to TBP-promoter complexes via heterodimeric histone fold domains. EMBO J. 15:3105–3116
  • Grant, P. A., Schieltz, D., Pray-Grant, M. G., Steger, D. J., Reese, J. C., Yates, J. R., and Workman, J. L.. 1998. A subset of TAFIIs are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94:45–53
  • Grant, P. A., Schieltz, D., Pray-Grant, M. G., Yates, J. R., and Workman, J. L.. 1998. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2:863–867
  • Grant, P. A., Sterner, D. E., Duggan, L. J., Workman, J. L., and Berger, S. L.. 1998. The SAGA unfolds: convergence of transcription regulators in chromatin-modifying complexes. Trends Cell Biol. 8:193–197
  • Grant, P. A., and Workman, J. L.. 1998. Transcription. A lesson in sharing? Nature 396:410–411 (News.)
  • Hoffmann, A., Chiang, C. M., Oelgeschlager, T., Xie, X., Burley, S. K., Nakatani, Y., and Roeder, R. G.. 1996. A histone octamer-like structure within TFIID. Nature 380:356–359
  • Hoffmann, A., Oelgeschlager, T., and Roeder, R. G.. 1997. Considerations of transcriptional control mechanisms: do TFIID-core promoter complexes recapitulate nucleosome-like functions? Proc. Natl. Acad. Sci. USA 94:8928–8935
  • Hoffmann, A., and Roeder, R. G.. 1996. Cloning and characterization of human TAF20/15. Multiple interactions suggest a central role in TFIID complex formation. J. Biol. Chem. 271:18194–18202
  • Holstege, F. C., Jennings, E. G., Wyrick, J. J., Lee, T. I., Hengartner, C. J., Green, M. R., Golub, T. R., Lander, E. S., and Young, R. A.. 1998. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728
  • Horiuchi, J., Silverman, N., Pina, B., Marcus, G. A., and Guarente, L.. 1997. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3. Mol. Cell. Biol. 17:3220–3228
  • Jacq, X., Brou, C., Lutz, Y., Davidson, I., Chambon, P., and Tora, L.. 1994. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117
  • Lavigne, A. C., Gangloff, Y. G., Carr, L., Mengus, G., Birck, C., Poch, O., Romier, C., Moras, D., and Davidson, I.. 1999. Synergistic transcriptional activation by TATA-binding protein and hTAFII28 requires specific amino acids of the hTAFII28 histone fold. Mol. Cell. Biol. 19:5050–5060
  • Lavigne, A. C., Mengus, G., May, M., Dubrovskaya, V., Tora, L., Chambon, P., and Davidson, I.. 1996. Multiple interactions between hTAFII55 and other TFIID subunits. Requirements for the formation of stable ternary complexes between hTAFII55 and the TATA-binding protein. J. Biol. Chem. 271:19774–19780
  • LeDouarin, B., Nielsen, A. L., Garnier, J. M., Ichinose, H., Jeanmougin, F., Losson, R., and Chambon, P.. 1996. A possible involvement of TIF1 alpha and TIF1 beta in the epigenetic control of transcription by nuclear receptors. EMBO J. 15:6701–6715
  • LeDouarin, B., Nielsen, A. L., You, J., Chambon, P., and Losson, R.. 1997. TIF1 alpha: a chromatin-specific mediator for the ligand-dependent activation function AF-2 of nuclear receptors? Biochem. Soc. Trans. 25:605–612
  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260
  • Madison, J. M., and Winston, F.. 1997. Evidence that Spt3 functionally interacts with Mot1, TFIIA, and TATA-binding protein to confer promoter-specific transcriptional control in Saccharomyces cerevisiae. Mol. Cell. Biol. 17:287–295
  • Martinez, E., Kundu, T. K., Fu, J., and Roeder, R. G.. 1998. A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J. Biol. Chem. 273:23781–23785
  • May, M., Mengus, G., Lavigne, A. C., Chambon, P., and Davidson, I.. 1996. Human TAFII28 promotes transcriptional stimulation by activation function 2 of the retinoid X receptors. EMBO J. 15:3093–3104
  • Mazzarelli, J. M., Mengus, G., Davidson, I., and Ricciardi, R. P.. 1997. The transactivation domain of adenovirus E1A interacts with the C terminus of human TAFII135. J. Virol. 71:7978–7983
  • Mengus, G., May, M., Carre, L., Chambon, P., and Davidson, I.. 1997. Human TAFII135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev. 11:1381–1395
  • Mengus, G., May, M., Jacq, X., Staub, A., Tora, L., Chambon, P., and Davidson, I.. 1995. Cloning and characterization of hTAFII18, hTAFII20 and hTAFII28: three subunits of the human transcription factor TFIID. EMBO J. 14:1520–1531
  • Mermelstein, F., Yeung, K., Cao, J., Inostroza, J. A., Erdjument-Bromage, H., Eagelson, K., Landsman, D., Levitt, P., Tempst, P., and Reinberg, D.. 1996. Requirement of a corepressor for Dr1-mediated repression of transcription. Genes Dev. 10:1033–1048
  • Michel, B., Komarnitsky, P., and Buratowski, S.. 1998. Histone-like TAFs are essential for transcription in vivo. Mol. Cell 2:663–673
  • Moqtaderi, Z., Keaveney, M., and Struhl, K.. 1998. The histone H3-like TAF is broadly required for transcription in yeast. Mol. Cell 2:675–682
  • Moqtaderi, Z., Yale, J. D., Struhl, K., and Buratowski, S.. 1996. Yeast homologues of higher eukaryotic TFIID subunits. Proc. Natl. Acad. Sci. USA 93:14654–14658
  • Natarajan, K., Jackson, B. M., Rhee, E., and Hinnebusch, A. G.. 1998. yTAFII61 has a general role in RNA polymerase II transcription and is required by Gcn4p to recruit the SAGA coactivator complex. Mol. Cell 2:683–692
  • Nikolov, D. B., Chen, H., Halay, E. D., Hoffman, A., Roeder, R. G., and Burley, S. K.. 1996. Crystal structure of a human TATA box-binding protein/TATA element complex. Proc. Natl. Acad. Sci. USA 93:4862–4867
  • Ogryzko, V. V., Kotani, T., Zhang, X., Schlitz, R. L., Howard, T., Yang, X. J., Howard, B. H., Qin, J., and Nakatani, Y.. 1998. Histone-like TAFs within the PCAF histone acetylase complex. Cell 94:35–44
  • Roberts, S. M., and Winston, F.. 1997. Essential functional interactions of SAGA, a Saccharomyces cerevisiae complex of Spt, Ada, and Gcn5 proteins, with the Snf/Swi and Srb/mediator complexes. Genetics 147:451–465
  • Saluja, D., Vassallo, M. F., and Tanese, N.. 1998. Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Mol. Cell Biol. 18:5734–5743
  • Sanders, S. L., Klebanow, E. R., and Weil, P. A.. 1999. TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo. J. Biol. Chem. 274:18847–18850
  • Sterner, D. E., Grant, P. A., Roberts, S. M., Duggan, L. J., Belotserkovskaya, R., Pacella, L. A., Winston, F., Workman, J. L., and Berger, S. L.. 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Cell. Biol. 19:86–98
  • Tanese, N., Saluja, D., Vassallo, M. F., Chen, J. L., and Admon, A.. 1996. Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100. Proc. Natl. Acad. Sci. USA 93:13611–13616
  • Vojtek, A. B., Hollenberg, S. M., and Cooper, J. A.. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74:205–214
  • vom Baur, E., Harbers, M., Um, S. J., Benecke, A., Chambon, P., and Losson, R.. 1998. The yeast Ada complex mediates the ligand-dependent activation function AF-2 of retinoid X and estrogen receptors. Genes Dev. 12:1278–1289
  • Walker, S. S., Shen, W. C., Reese, J. C., Apone, L. M., and Green, M. R.. 1997. Yeast TAFII145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state. Cell 90:607–614
  • Wieczorek, E., Brand, M., Jacq, X., and Tora, L.. 1998. Function of TAFII-containing complex without TBP in transcription by RNA polymerase II. Nature 393:187–191
  • Workman, J. L., and Kingston, R. E.. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–579
  • Xie, X., Kokubo, T., Cohen, S. L., Mirza, U. A., Hoffmann, A., Chait, B. T., Roeder, R. G., Nakatani, Y., and Burley, S. K.. 1996. Structural similarity between TAFs and the heterotetrameric core of the histone octamer. Nature 380:316–322
  • Yamit-Hezi, A., and Dikstein, R.. 1998. TAFII105 mediates activation of anti-apoptotic genes by NF-kappaB. EMBO J. 17:5161–5169
  • Yokomori, K., Chen, J. L., Admon, A., Zhou, S., and Tjian, R.. 1993. Molecular cloning and characterization of dTAFII30 alpha and dTAFII30 beta: two small subunits of Drosophila TFIID. Genes Dev. 7:2587–2597

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.