44
Views
116
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Repair of Intermediate Structures Produced at DNA Interstrand Cross-Links in Saccharomyces cerevisiae

, &
Pages 3425-3433 | Received 24 Aug 1999, Accepted 17 Feb 2000, Published online: 27 Mar 2023

REFERENCES

  • Ahne, F., Jha, B., and Eckardt-Schupp, F.. 1997. The RAD5 gene product is involved in the avoidance of non-homologous end-joining of DNA double strand breaks in the yeast Saccharomyces cerevisiae. Nucleic Acids Res. 25:743–749
  • Arbel, A., Zenvirth, D., and Simchen, G.. 1999. Sister chromatid DNA repair is mediated by RAD54, not by DMC1 or TID1. EMBO J. 18:2648–2658
  • Averbeck, D., and Moustacchi, E.. 1975. 8-Methoxypsoralen plus 365nm light effects and repair in yeast. Biochim. Biophys. Acta 395:393–404
  • Bai, Y., and Symington, L. S.. 1996. A Rad52 homolog is required for RAD51-independent mitotic recombination in Saccharomyces cerevisiae. Genes Dev. 10:2025–2037
  • Baynton, K., Bresson-Roy, A., and Fuchs, R. P. P.. 1998. Analysis of damage tolerance pathways in Saccharomyces cerevisiae: a requirement for Rev3 DNA polymerase in translesion synthesis. Mol. Cell. Biol. 18:960–966
  • Bessho, T., Mu, D., and Sancar, A.. 1997. Initiation of DNA interstrand cross-link repair in humans: the nucleotide excision repair system makes dual incisions 5′ to the cross-linked base and removes 22- to 28-nucleotide-long damage-free strand. Mol. Cell. Biol. 17:6822–6830
  • Boulton, S. J., and Jackson, S. P.. 1996. Identification of a Saccharomyces cerevisiae Ku80 homologue: roles in DNA double strand break repair and in telomeric maintenance. Nucleic Acids Res. 23:4639–4648
  • Brendel, M., and Haynes, R.. 1973. Interactions between genes controlling sensitivity to radiation and alkylation in yeast. Mol. Gen. Genet. 125:197–216
  • Chamankhah, M., and Xiao, W.. 1999. Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance. Nucleic Acids Res. 27:2072–2079
  • Chaney, S. G., and Sancar, A.. 1996. DNA repair:enzymatic mechanisms and relevance to drug response. J. Natl. Can. Inst. 88:1346–1360
  • Cheng, S., Sancar, A., and Hearst, J. E.. 1991. RecA-dependent incision of psoralen-crosslinked DNA by (A)BC excinuclease. Nucleic Acids Res. 19:657–663
  • Cheng, S., Van Houten, B., Gamper, H. B., Sancar, A., and Hearst, J. E.. 1988. Use of psoralen-modified oligonucleotides to trap three stranded RecA-DNA complexes and repair of these crosslinked complexes by ABC excinuclease. J. Biol. Chem. 263:15110–15117
  • Chu, G.. 1996. Double strand break repair. J. Biol. Chem. 272:24097–24100
  • Chu, G., and Gunderson, K.. 1991. Separation of large DNA by a variable-angle contour-clamped homogenous electric field electrophoresis. Anal. Biochem. 194:439–446
  • Comess, K. M., and Lippard, S. J.. 1993. Molecular aspects of platinum-DNA interactions Molecular aspects of anticancer drug–DNA interactions. Neidle, S., and Waring, M. J. 134–168 Macmillan Press Ltd., London, United Kingdom
  • Cundari, E., Dardalhon, M., Rousset, S., and Averbeck, D.. 1991. Repair of 8-methoxypsoralen photoinduced cross-links in yeast. Mol. Gen. Genet. 228:335–344
  • Dardalhon, M., and Averbeck, D.. 1995. Pulsed field electrophoresis of the repair of psoralen plus UVA induced DNA photoproducts in Saccharomyces cerevisiae. Mutat. Res. 336:49–60
  • Dardalhon, M., de Massy, B., Nicolas, A., and Averbeck, D.. 1998. Mitotic recombination and localized DNA double-strand breaks are induced after 8-methoxypsoralen and UVA irradiation in Saccharomyces cerevisiae. Curr. Genet. 43:30–42
  • Durant, S. T., Morris, M. M., Illand, M., McKay, H. J., McCormick, C., Hirst, G. L., Borts, R. H., and Brown, R.. 1999. Dependence on RAD52 and RAD1 for anticancer drug resistance mediated by inactivation of mismatch repair genes. Curr. Biol. 14:51–54
  • Fan, H. Y., Cheng, K. K., and Klein, H. L.. 1996. Mutations in the RNA polymerase II transcription machinery suppress the hyper-recombination mutant hprI delta of Saccharomyces cerevisiae. Genetics 142:749–759
  • Fishman-Lobell, J., and Haber, J. E.. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484
  • Friedberg, E. C., Walker, G. C., and Siede, W.. 1995. DNA repair and mutagenesis. American Society for Microbiology, Washington, D.C.
  • Galli, A., and Schiestl, R. H.. 1996. Hydroxyurea induces recombination in dividing but not in G1 or G2 cell cycle arrested yeast cells. Mutat. Res. 354:69–75
  • Game, J., and Mortimer, R. K.. 1974. A genetic study of X-ray sensitive mutants in yeast. Mutat. Res. 24:281–292
  • Guthrie, C., and Fink, G. R.. 1991. Guide to yeast genetics and molecular biology. Academic Press, Inc., San Diego, Calif
  • Hartley, J. A.. 1993. Selectivity in alkylating agent-DNA interactions Molecular aspects of anticancer drug–DNA Interactions. Neidle, S., and Waring, M. J. 1–31 Macmillan Press Ltd., London, United Kingdom
  • Henriques, J. A. P., and Moustacchi, E.. 1981. Interactions between mutations for sensitivity to psoralen photoaddition (pso) and to radiation (rad) in Saccharomyces cerevisiae. J. Bacteriol. 148:248–256
  • Ivanov, E. L., and Haber, J. E.. 1995. RAD1 and RAD10, but not other excision repair genes, are required for double-strand-break induced recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2254–2251
  • Jachymczyk, W., Van Borstel, R. C., Mowat, M. R. A., and Hastings, P. J.. 1981. Repair of interstrand crosslinks in DNA of Saccharomyces cerevisiae requires two systems for DNA repair: the RAD3 system and the RAD51 system. Mol. Gen. Genet. 182:196–205
  • Johnson, R. E., Kovvali, G. K., Prakash, L., and Prakash, S.. 1998. Role of yeast Rth1 nuclease and its homologs in mutation avoidance, DNA repair, and DNA replication. Curr. Genet. 34:21–29
  • Johzuka, K., and Ogawa, H.. 1995. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139:1521–1532
  • Kadyk, L. C., and Hartwell, L. H.. 1993. Replication-dependent sister chromatid recombination in rad1 mutants of Saccharomyces cerevisiae. Genetics 133:469–487
  • Kramer, K. M., Brock, J. A., Bloom, K., Moore, J. K., and Haber, J. E.. 1994. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, non-homologous recombination events. Mol. Cell. Biol. 14:1293–1303
  • Kumaresan, K. R., Hang, B., and Lambert, M. W.. 1995. Human endonucleolytic incision of DNA 3′ and 5′ to a site-directed psoralen monoadduct and interstrand cross-link. J. Biol. Chem. 270:30709–30716
  • Liu, N., Lamerdin, J. E., Tebbs, R. S., Schild, D., Tucker, J. D., Shen, M. R., Brookman, K. W., Siciliano, M. J., Walter, C. A., Fan, W., Narayana, L. S., Zhou, Z.-Q., Adamson, A. W., Sorenson, K. J., Chen, D. J., Jones, N. J., and Thompson, L. H.. 1998. XRCC2 and XRCC3, new human Rad51-family members, promote chromosomal stability and protect against DNA crosslinks and other damages. Mol. Cell 1:783–793
  • Longtine, M. S., McKenzie, A.III, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P., and Pringle, J. R.. 1998. Additional Modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961
  • Magana-Schwencke, N., Henriques, J.-A. P., Chanet, R., and Moustacchi, E.. 1982. The fate of 8-methoxypsoralen photoinduced crosslinks in nuclear and mitochondrial yeast DNA: comparison of wild-type and repair-deficient strains. Proc. Natl. Acad. Sci. USA 79:1722–1726
  • Mages, G. J., Feldman, H. M., and Winnacker, E.-L.. 1996. Involvement of the Saccharomyces cerevisiae HDF1 gene in DNA double-strand break repair and recombination. J. Biol. Chem. 271:7910–7915
  • McHugh, P. J., Gill, R. D., Waters, R., and Hartley, J. A.. 1999. Excision repair of nitrogen mustard-DNA adducts in Saccharomyces cerevisiae. Nucleic Acids Res. 27:3259–3266
  • Meniel, V., Magana-Schwencke, N., Averbeck, D., and Waters, R.. 1997. Preferential incision of interstrand crosslinks induced by 8-methoxypsoralen plus UVA in yeast during the cell cycle. Mutat. Res. 384:23–32
  • Milne, G. T., Jin, S., Shannon, K. B., and Weaver, D. T.. 1996. Mutations in two Ku homologs define a DNA end-joining repair pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:4189–4198
  • Moore, J. K., and Haber, J. E.. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164–2173
  • Moreau, S., Ferguson, J. R., and Symington, L. S.. 1999. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end-joining, or telomere maintenance. Mol. Cell. Biol. 19:556–566
  • Muller, C., Calsou, P., Frit, P., Cayrol, C., Carter, T., and Salles, B.. 1998. UV sensitivity and impaired nucleotide excision repair in DNA-dependent protein kinase mutant cells. Nucleic Acids Res. 26:1382–1389
  • Muller, C., Christodoulopoulos, G., Salles, B., and Panasci, L.. 1998. DNA-dependent protein kinase activity correlates with clinical and in vitro sensitivity of chronic lymphocytic leukemia lymphocytes to nitrogen mustards. Blood 92:2213–2219
  • Nelson, J. R., Lawrence, C. W., and Hinkle, D.. 1996. Thymine-thymine dimer bypass in yeast DNA polymerase ζ. Science 272:1646–1649
  • Povirk, L. F., and Shuker, D. E.. 1994. DNA damage and mutagenesis induced by nitrogen mustards. Mutat. Res. 318:205–226
  • Rattray, A. J., and Symington, L. S.. 1994. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138:587–595
  • Reagan, M. S., Pittenger, C., Siede, W., and Friedberg, E. C.. 1995. Characterization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide-excision repair gene. J. Bacteriol. 177:364–371
  • Reed, S. H., McCready, S., Boiteux, S., and Waters, R.. 1996. The levels of repair of endonuclease III-sensitive sites, 6-4 photoproducts and cyclobutane pyrimidine dimers differ in a point mutation for RAD14, the Saccharomyces cerevisiae homologue of the human gene defective in XPA patients. Mol. Gen. Genet. 250:515–522
  • Rijkers, T., Van Den Ouweland, J., Morolli, B., Rolink, A. G., Baarends, W. M., Van Sloun, P.-P. H., Lohman, P. H. M., and Pastink, A.. 1998. Targeted inactivation of mouse RAD52 reduces homologous recombination but not resistance to ionizing radiation. Mol. Cell. Biol. 18:6423–6429
  • Ruhland, A., and Brendel, M.. 1978. Mutagenesis by cytostatic alkylating agents in yeast strains of differing repair capacities. Genetics 92:83–97
  • Ruhland, A., Kircher, M., Wilborn, F., and Brendel, M.. 1981. A yeast mutant specifically sensitive to bifunctional alkylation. Mutat. Res. 91:457–462
  • Seigneur, M., Bidnenko, V., Dusko Erlich, S., and Michel, B.. 1998. RuvAB acts at arrested replication forks. Cell 95:419–430
  • Siede, W., and Brendel, M.. 1982. Interactions among genes controlling sensitivity to radiation (RAD) and to alkylation by nitrogen mustard (SNM) in yeast. Curr. Genet. 5:33–38
  • Sladek, F. M., Munn, M. M., Rupp, W. D., and Howard-Flanders, P.. 1989. In vitro repair of psoralen-DNA crosslinks by RecA, UvrABC, and the 5′-exonuclease of DNA polymerase I. J. Biol. Chem. 264:6755–6765
  • Sugawara, N., and Haber, J. E.. 1992. Characterization of double-strand break-induced recombination:homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575
  • Symington, L. S.. 1998. Homologous recombination is required for the viability of rad27 mutants. Nucleic Acids Res. 26:5589–5595
  • Takata, M., Sasaki, M. S., Sononda, E., Morrison, C., Hashimoto, M., Utsumi, H., Yamaguchi-Iwai, Y., Shinohara, A., and Takeda, S.. 1998. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells. EMBO J. 17:5497–5508
  • Teo, S.-H., and Jackson, S. P.. 1997. Identification of Saccharomyces cerevisiae DNA ligase IV: involvement in DNA double-strand break repair. EMBO J. 16:4788–4795
  • Tishkoff, D. X., Filosi, N., Gaida, G. M., and Kolodner, R. D.. 1997. A novel mutation avoidance mechanism dependent on RAD27 is distinct from mismatch repair. Cell 88:253–263
  • Tsukaoto, Y., Kato, J., and Ikeda, H.. 1996. Hdf1, a yeast Ku-protein homologue, is involved in illegitimate recombination, but not homologous recombination. Nucleic Acids Res. 24:2067–2072
  • Tsukaoto, Y., Kato, J., and Ikeda, H.. 1997. Silencing factors participate in DNA repair and recombination in Saccharomyces cerevisiae. Nature 388:900–903
  • Van Houten, B., Gamper, H., Holbrook, S. R., Hearst, J. E., and Sancar, A.. 1986. Action mechanism of ABC excision nuclease on a DNA substrate containing a psoralen crosslink at a defined position. Proc. Natl. Acad. Sci. USA 83:8077–8081
  • Wilborn, F., and Brendel, M.. 1989. Formation and stability of interstrand cross-links induced by cis- and trans-diamminechloroplatinum (II) in the DNA of Saccharomyces cerevisiae strains differing in repair capacity. Curr. Genet. 16:331–338
  • Wu, X., and Wang, Z.. 1999. Relationships between yeast Rad27 and Apn1 in response to apurinic/apyrimidinic sites in DNA. Nucleic Acids Res. 27:956–962
  • Wu, X., Wilson, T. E., and Lieber, M. R.. 1999. A role for FEN-1 in nonhomologous end joining: the order of strand annealing and nucleolytic processing events. Proc. Natl. Acad. Sci. USA 96:1303–1308
  • Xiao, W., and Chow, B. L.. 1998. Synergism between yeast nucleotide excision repair and base excision repair pathways in the protection against DNA methylation damage. Curr. Genet. 33:92–99
  • Xiao, W., Chow, B. L., and Rathgeber, L.. 1996. The repair of DNA methylation damage in Saccharomyces cerevisiae. Curr. Genet. 30:461–468
  • Yamauchi-Iwai, Y., Sonoda, E., Buerstedde, J.-M., Bezzubova, O, Morrison, C., Takata, M., Shinohara, A., and Takeda, S.. 1998. Homologous recombination, but not DNA repair, is reduced in vertebrate cells lacking RAD52. Mol. Cell. Biol. 18:6430–6435

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.