33
Views
120
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Three Yeast Proteins Related to the Human Candidate Tumor Suppressor p33ING1 Are Associated with Histone Acetyltransferase Activities

, , , &
Pages 3807-3816 | Received 26 Aug 1999, Accepted 13 Mar 2000, Published online: 28 Mar 2023

REFERENCES

  • Aasland, R., Gibson, T. J., and Stewart, A. F.. 1995. The PHD finger: implications for chromatin-mediated transcriptional regulation. Trends Biochem. Sci. 20:56–59
  • Adams, A., Gottschling, D. E., Kaiser, C. A., and Stearns, T.. 1998. Methods in yeast genetics, 1997 ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Allard, S., Utley, R. T., Savard, J., Clarke, A., Grant, P., Brandl, C. J., Pillus, L., Workman, J. L., and Cote, J.. 1999. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p. EMBO J. 18:5108–5119
  • Archer, S. Y., and Hodin, R. A.. 1999. Histone acetylation and cancer. Curr. Opin. Genet. Dev. 9:171–174
  • Bannister, A. J., and Kouzarides, T.. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643
  • Bartel, P., Chien, C. T., Sternglanz, R., and Fields, S.. 1993. Elimination of false positives that arise in using the two-hybrid system. BioTechniques 14:920–924
  • Bassett, D. E., Boguski, M. S., Spencer, F., Reeves, R., Kim, S., Weaver, T., and Hieter, P.. 1997. Genome cross-referencing and XREFdb: implications for the identification and analysis of genes mutated in human disease. Nat. Genet. 15:339–344
  • Berger, S. L.. 1999. Gene activation by histone and factor acetyltransferases. Curr. Opin. Cell Biol. 11:336–341
  • Bradbury, E. M.. 1992. Reversible histone modifications and the chromosome cell cycle. Bioessays 14:9–16
  • Breeden, L., and Nasmyth, K.. 1985. Regulation of yeast HO gene. Cold Spring Harb. Symp. Quant. Biol. 50:643–650
  • Brownell, J. E., Zhou, J., Ranalli, T., Kobayashi, R., Edmondson, D. G., Roth, S. Y., and Allis, C. D.. 1996. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851
  • Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M. L., Nakatani, Y., and Evans, R. M.. 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580
  • Clarke, A. S., Lowell, J. E., Jacobson, S. J., and Pillus, L.. 1999. Esa1 is an essential histone acetyltransferase required for cell cycle progression. Mol. Cell. Biol. 19:2515–2526
  • Cole, M., and McMahon, S. B.. 1999. The Myc oncoprotein: a critical evaluation of transactivation and target gene regulation. Oncogene 18:2916–2924
  • Dudley, A. M., Rougeulle, C., and Winston, F.. 1999. The Spt components of SAGA facilitate TBP binding to a promoter at a post-activator-binding step in vivo. Genes Dev. 13:2940–2945
  • Eberharter, A., Sterner, D. E., Schieltz, D., Hassan, A., Yates, J. R.III, Berger, S. L., and Workman, J. L.. 1999. The ADA complex is a distinct histone acetyltransferase complex in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:6621–6631
  • Elble, R. A.. 1992. Simple and efficient procedure for transformation of yeasts. BioTechniques 13:18–20
  • Garkavstev, I., and Riabowol, K.. 1997. Extension of the replicative life span of human diploid fibroblasts by inhibition of the p33ING1 candidate tumor suppressor. Mol. Cell. Biol. 17:2014–2019
  • Garkavtsev, I., Demetrick, D., and Riabowol, K.. 1997. Cellular localization and chromosome mapping of a novel candidate tumor suppressor gene (ING1). Cytogenet. Cell Genet. 76:176–178
  • Garkavtsev, I., Grigorian, I. A., Ossovskaya, V. S., Chernov, M. V., Chumakov, P. M., and Gudkov, A. V.. 1998. The candidate tumor suppressor p33ING1 cooperates with p53 in cell growth control. Nature 391:295–298
  • Garkavtsev, I., Kazarov, A., Gudkov, A., and Riabowol, K.. 1996. Suppression of the novel growth inhibitor p33ING1 promotes neoplastic transformation. Nat. Genet. 14:415–420
  • Georgakopoulos, T., and Thireos, G.. 1992. Two distinct yeast transcriptional activators require the function of the GCN5 protein to promote normal levels of transcription. EMBO J. 11:4145–4152
  • Gibbons, R. J., Bachoo, S., Picketts, D. J., Aftimos, S., Asenbauer, B., Bergoffen, J., Berry, S. A., Dahl, N., Fryer, A., Keppler, K., Kurosawa, K., Levin, M. L., Masuno, M., Neri, G., Pierpont, M. E., Slaney, S. F., and Higgs, D. R.. 1997. Mutations in transcriptional regulator ATRX establish the functional significance of a PHD-like domain. Nat. Genet. 17:146–148
  • Grant, P. A., Schieltz, D., Pray-Grant, M. G., Yates, J. R.III, and Workman, J. L.. 1998. The ATM-related cofactor Tra1 is a component of the purified SAGA complex. Mol. Cell 2:863–867
  • Grant, P. A., Duggan, L., Cote, J., Roberts, S. M., Brownell, J. E., Candau, R., Ohba, R., Owen-Hughes, T., Allis, C. D., Winston, F., Berger, S. L., and Workman, J. L.. 1997. Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones: characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev. 11:1640–1650
  • Gregory, P. D., Schmid, A., Zavari, M., Lui, L., Berger, S. L., and Hörz, W.. 1998. Absence of Gcn5 HAT activity defines a novel state in the opening of chromatin at the PHO5 promoter in yeast. Mol. Cell 1:495–505
  • Hasenpusch-Theil, K., Chadwick, B. P., Theil, T., Heath, S. K., Wilkinson, D. G., and Frischauf, A. M.. 1999. PHF2, a novel PHD finger gene located on human chromosome 9q22. Mamm. Genome 10:294–298
  • Helbing, C. C., Veillette, C., Riabowol, K., Johnston, R. N., and Garkavtsev, I.. 1997. A novel candidate tumor suppressor, ING1, is involved in the regulation of apoptosis. Cancer Res. 57:1255–1258
  • Hill, J., Donald, K. A., Griffiths, D. E., and Donald, G.. 1991. Enhanced whole cell yeast transformation. Nucleic Acids Res. 19: 5791
  • Hollenberg, S. M., Sternglanz, R., Chenag, P. F., and Weintraub, H.. 1995. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15:3813–3822
  • Hong, L., Schroth, G. P., Matthews, H. R., Yau, P., and Bradbury, E. M.. 1993. Studies of the DNA binding properties of the histone H4 amino terminus. J. Biol. Chem. 268:305–314
  • Hubberstey, A., Yu, G., Loewith, R. J., Lakusta, C., and Young, D.. 1996. Mammalian CAP interacts with CAP, CAP2 and actin. J. Cell. Biochem. 61:459–466
  • Ito, T., Levenstein, M. E., Fyodorov, D. V., Kutach, A. K., Kobayashi, R., and Kadonaga, J. T.. 1999. ACF consists of two subunits, Acf1 and ISWI, that function cooperatively in the ATP-dependent catalysis of chromatin assembly. Genes Dev. 13:1529–1539
  • Jacobson, S., and Pillus, L.. 1999. Modifying chromatin and concepts of cancer. Curr. Opin. Gen. Dev. 9:175–184
  • Jeggo, P. A., Carr, A. M., and Lehmann, A. R.. 1998. Splitting the ATM: distinct repair and checkpoint defects in ataxia-telangiectasia. Trends Genet. 14:312–316
  • Kleff, S., Andrulis, E. D., Anderson, C. W., and Sternglanz, R.. 1995. Identification of a gene encoding a yeast histone H4 acetyltransferase. J. Biol. Chem. 270:24674–25677
  • Kouzarides, T.. 1999. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9:40–48
  • Kuo, M. H., and Allis, C. D.. 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626
  • Kuo, M. H., Zhou, J., Jambeck, P., Churchill, M. E. A., and Allis, C. D.. 1998. Histone acetyltransferase activity of Gcn5p is required for the activation of targeted genes in vivo. Genes Dev. 12:627–639
  • Lau, W. W., Schneider, K. R., and O'Shea, E. K.. 1998. A genetic study of signaling processes for repression of PHO5 transcription in Saccharomyces cerevisiae. Genetics 150:1349–1359
  • Lee, D. Y., Hayes, J. J., Pruss, D., and Wolffe, A. P.. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84
  • Lees-Miller, S. P.. 1996. The DNA-dependent protein kinase, DNA-PK: 10 years and still no ends in sight. Biochem. Cell Biol. 74:503–512
  • Lu, X., Meng, X., Morris, C. A., and Keating, M. T.. 1998. A novel human gene, WSTF, is deleted in Williams syndrome. Genomics 54:241–249
  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251–260
  • Marcus, G. A., Silverman, N., Berger, S. L., Horiuchi, J., and Guarente, L.. 1994. Functional similarity and physical association between GCN5 and ADA2: putative transcriptional adaptors. EMBO J. 13:4807–4815
  • Matviw, H., Yu, G., and Young, D.. 1992. Identification of a human cDNA encoding a protein that is structurally related to the yeast adenylyl cyclase-associated CAP proteins. Mol. Cell. Biol. 12:5033–5040
  • McMahon, S. B., Van Buskirk, H. A., Dugan, K. A., Copeland, T. D., and Cole, M. D.. 1998. The novel ATM-related protein TRRAP is an essential cofactor for the c-Myc and E2F oncoproteins. Cell 94:363–374
  • Mizzen, C. A., Yang, X. J., Kokubo, T., Brownell, J. E., Bannister, A. J., Owen-Hughes, T., Workman, J. L., Wang, L., Berger, S. L., Kouzarides, T., Nakatani, Y., and Allis, C. D.. 1996. The TAFII250 subunit of TFIID has histone acetyltransferase activity. Cell 87:1261–1270
  • Mizzen, C. A., Brownell, J. E., Cook, R. G., and Allis, C. D.. 1999. Histone acetyltransferases: preparation of substrates and assay procedures. Methods Enzymol. 304:675–696
  • Nagamine, K., Peterson, P., Scott, H. S., Kudoh, J., Minoshima, S., Heino, M., Krohn, K. J., Lalioti, M. D., Mullis, P. E., Antonarakis, S. E., Kawasaki, K., Asakawa, S., Ito, F., and Shimizu, N.. 1997. Positional cloning of the APECED gene. Nat. Genet. 17:393–398
  • Ogryzko, V. O., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Ohmori, M., Nagai, M., Tasaka, T., Koeffler, H. P., Riabowol, K., and Takahara, J.. 1999. Decreased expression of p33ING1 mRNA in lymphoid malignancies. Am. J. Hematol. 62:118–119
  • Owen-Hughes, T., and Workman, J. L.. 1994. Experimental analysis of chromatin function in transcription control. Crit. Rev. Eukaryot. Gene Expr. 4:401–441
  • Paranjape, S. M., Kamakaka, R. T., and Kadonaga, J. T.. 1994. Role of chromatin structure in the regulation of transcription by RNA polymerase II. Annu. Rev. Biochem. 63:265–297
  • Parthun, M. R., Widom, J., and Gottschling, D. E.. 1996. The major cytoplasmic histone acetyltransferase in yeast: links to chromatin replication and histone metabolism. Cell 87:85–94
  • Pazin, M. J., and Kadonaga, J. T.. 1997. What's up and down with histone deacetylation and transcription? Cell 89:325–328
  • Rinderle, C., Christensen, H. M., Schweiger, S., Lehrach, H., and Yaspo, M. L.. 1999. AIRE encodes a nuclear protein co-localizing with cytoskeletal filaments: altered subcellular distribution of mutants lacking the PHD zinc fingers. Hum. Mol. Genet. 8:277–290
  • Roth, S. Y., and Allis, C. D.. 1996. The subunit-exchange model of histone acetylation. Trends Cell Biol. 6:371–375
  • Rothstein, R. J.. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211
  • Ruiz-Garcia, A. B., Sendra, R., Galiana, M., Pambianco, M., Perez-Ortin, J. E., and Tordera, V.. 1998. HAT1 and HAT2 proteins are components of a yeast nuclear histone acetyltransferase enzyme specific for free histone H4. J. Biol. Chem. 273:12599–12605
  • Russell, P., and Nurse, P.. 1986. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45:145–153
  • Sakamuro, D., and Prendergast, G. C.. 1999. New Myc-interacting proteins: a second Myc network emerges. Oncogene 18:2942–2954
  • Saleh, A., Schieltz, D., Ting, N., McMahon, S. B., Litchfield, D. W., Yates, J. R.III, Lees-Miller, S. P., Cole, M. D., and Brandl, C. J.. 1998. Tra1 is a component of the yeast Ada-Spt transcriptional regulatory complexes. J. Biol. Chem. 273:26559–26565
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sass, P., Field, J., Nikawa, J., Toda, T., and Wigler, M.. 1989. 1986. Cloning and characterization of the high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83:9303–9307
  • Schiestl, R. H., and Gietz, R. D.. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346
  • Siddique, H., Zou, J. P., Rao, V. N., and Reddy, E. S.. 1998. The BRAC2 is a histone acetyltransferase. Oncogene 16:2283–2285
  • Smith, E. R., Eisen, A., Gu, W., Sattah, M., Pannuti, A., Zhou, J., Cook, R. G., Lucchesi, J. C., and Allis, C. D.. 1998. Esa1 is a histone acetyltransferase that is essential for growth in yeast. Proc. Natl. Acad. Sci. USA 95:3561–3565
  • Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198
  • Steger, D. J., Eberharter, A., John, S., Grant, P. A., and Workman, J. L.. 1998. Purified histone acetyltransferases stimulate HIV-1 transcription from preassembled nucleosomal arrays. Proc. Natl. Acad. Sci. USA 95:12924–12929
  • Sterner, D. E., Grant, P. A., Roberts, S. M., Duggan, L. J., Belotserkovskaya, R., Pacella, L. A., Winston, F., Workman, J. L., and Berger, S. L.. 1999. Functional organization of the yeast SAGA complex: distinct components involved in structural integrity, nucleosome acetylation, and TATA-binding protein interaction. Mol. Biol. Cell 19:86–98
  • Struhl, K.. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev. 12:599–606
  • Syntichaki, P., and Thireos, G.. 1998. The Gcn5-Ada complex potentiates the histone acetyltransferase activity of Gcn5. J. Biol. Chem. 273:24414–24419
  • Toyama, T., Hirotaka, I., Watson, P., Muzik, H., Saettler, E., Magliocco, A., DiFrancesco, L., Forsyth, P., Garkavtsev, I., Kobayashi, S., and Riabowol, K.. 1999. Suppression of ING1 expression in sporadic breast cancer. Oncogene 18:5187–5193
  • Turner, B. M., and O'Neill, L. P.. 1995. Histone acetylation in chromatin and chromosomes. Semin. Cell Biol. 6:229–236
  • Utley, R. T., Ikeda, K., Grant, P. A., Cote, J., Steger, D. J., Eberharter, A., John, S., and Workman, J. L.. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498–502
  • Vassilev, A., Yamauchi, J., Kotani, T., Prives, C., Avantaggianti, M. L., Qin, J., and Nakatani, Y.. 1998. The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol. Cell 2:869–875
  • Verreault, A., Kaufman, P. D., Kobayashi, R., and Stillman, B.. 1998. Nucleosomal DNA regulates the core-histone-binding subunit of the human Hat1 acetyltransferase. Curr. Biol. 8:96–108
  • Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane-Robinson, C., Allis, C. D., and Workman, J. L.. 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508–2518
  • Vojtek, A. B., Hollenberg, S. M., and Cooper, J. A.. 1993. Mammalian RAS interacts directly with the serine/threonine kinase Raf. Cell 74:205–214
  • Wang, L., Liu, L., and Berger, S. L.. 1998. Critical residues for histone acetylation by Gcn5, functioning in Ada and SAGA complexes, are also required for transcriptional function in vivo. Genes Dev. 12:640–653
  • Yang, X. J., Ogryzko, V., Nishikawa, J., Howard, B. H., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324
  • Zeremski, M., Hill, J. E., Kwek, S. S. S., Grigorian, I. A., Gurova, K. V., Garkavtsev, I. V., Diatchenko, L., Koonin, E. V., and Gudkov, A. V.. 1999. Structure and regulation of the mouse ing1 gene. J. Biol. Chem. 274:32172–32181

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.