27
Views
132
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Role of Saccharomyces cerevisiae ISA1and ISA2 in Iron Homeostasis

&
Pages 3918-3927 | Received 03 Dec 1999, Accepted 01 Mar 2000, Published online: 28 Mar 2023

REFERENCES

  • Askwith, C., Eide, D., Van Ho, A., Bernard, P. S., Li, L., Davis-Kaplan, S., Sipe, D. M., and Kaplan, J.. 1994. The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76:403–410
  • Babcock, M., de Silva, D., Oaks, R., Davis-Kaplan, S., Jiralerspong, S., Montermini, L., Pandolfo, M., and Kaplan, J.. 1997. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712
  • Beers, J., Glerum, D. M., and Tzagoloff, A.. 1997. Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. J. Biol. Chem. 272:33191–33196
  • Beinert, H., and Kennedy, M. C.. 1993. Aconitase, a two-faced protein: enzyme and iron regulatory factor. FASEB J. 7:1442–1449
  • Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., and Boeke, J. D.. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132
  • Casareno, R. L., Waggoner, D., and Gitlin, J. D.. 1998. The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. J. Biol. Chem. 273:23625–23628
  • Cullin, C., and Minvielle-Sebastia, L.. 1994. Multipurpose vectors designed for the fast generation of N- or C-terminal epitope-tagged proteins. Yeast 10:105–112
  • Daum, G., Bohni, P. C., and Schatz, G.. 1982. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257:13028–13033
  • Flint, D. H.. 1996. Escherichia coli contains a protein that is homologous in function and N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase. J. Biol. Chem. 271:16068–16074
  • Foury, F., and Cazzalini, O.. 1997. Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria. FEBS Lett. 411:373–377
  • Fu, W., Jack, R. F., Morgan, T. V., Dean, D. R., and Johnson, M. K.. 1994. nifU gene product from Azotobacter vinelandii is a homodimer that contains two identical [2Fe-2S] clusters. Biochemistry 33:13455–13463
  • Gangloff, S. P., Marguet, D., and Lauquin, G. J.-M.. 1990. Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol. Cell. Biol. 10:3551–3561
  • Garland, S., Hoff, K., Vickery, L., and Culotta, V.. 1999. Saccharomyces cerevisiae ISU1 and ISU2: members of a well-conserved gene family for iron-sulfur cluster assembly. J. Mol. Biol. 294:897–907
  • Gietz, R. D., and Schiestl, R. H.. 1991. Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast 7:253–263
  • Gonzalez, A., Rodriguez, L., Olivera, H., and Soberon, M.. 1985. NADP+-dependent glutamate dehydrogenase activity is impaired in mutants of Saccharomyces cerevisiae that lack aconitase. J. Gen. Microbiol. 131:2565–2571
  • Hartl, F. U., Ostermann, J., Guiard, B., and Neupert, W.. 1987. Successive translocation into and out of the mitochondrial matrix: targeting of proteins to the intermembrane space by a bipartite signal peptide. Cell 51:1027–1037
  • Hidalgo, E., and Demple, B.. 1996. Activation of SoxR-dependent transcription in vitro by noncatalytic or NifS-mediated assembly of [2Fe-2S] clusters into apo-SoxR. J. Biol. Chem. 271:7269–7272
  • Irvin, S. D., and Bhattacharjee, J. K.. 1998. A unique fungal lysine biosynthesis enzyme shares a common ancestor with tricarboxylic acid cycle and leucine biosynthetic enzymes found in diverse organisms. J. Mol. Evol. 46:401–408
  • Jacobson, M. R., Cash, V. L., Weiss, M. C., Laird, N. F., Newton, W. E., and Dean, D. R.. 1989. Biochemical and genetic analysis of the nifUSVWZM cluster from Azotobacter vinelandii. Mol. Gen. Genet. 219:49–57
  • Kispal, G., Csere, P., Guiard, B., and Lill, R.. 1997. The ABC transporter Atm1p is required for mitochondrial iron homeostasis. FEBS Lett. 418:346–350
  • Kispal, G., Csere, P., Prohl, C., and Lill, R.. 1999. The mitochondrial proteins Atm1p and Nfs1p are essential for biogenesis of cytosolic Fe/S proteins. EMBO J. 18:3981–3989
  • Klausner, R. D., Rouault, T. A., and Harford, J. B.. 1993. Regulating the fate of mRNA: the control of cellular iron metabolism. Cell 72:19–28
  • Knight, S. A., Sepuri, N. B., Pain, D., and Dancis, A.. 1998. Mt-Hsp70 homolog, Ssc2p, required for maturation of yeast frataxin and mitochondrial iron homeostasis. J. Biol. Chem. 273:18389–18393
  • Land, T., and Rouault, T. A.. 1998. Targeting of a human iron-sulfur cluster assembly enzyme, nifs, to different subcellular compartments is regulated through alternative AUG utilization. Mol. Cell 2:807–815
  • Lange, H., Kaut, A., Kispal, G., and Lill, R.. 2000. A mitochondrial ferredoxin is essential for biogenesis of cellular iron-sulfur proteins. Proc. Natl. Acad. Sci. USA 97:1050–1055
  • Li, J., Kogan, M., Knight, S. A., Pain, D., and Dancis, A.. 1999. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J. Biol. Chem. 274:33025–33034
  • Liu, X. F., and Culotta, V. C.. 1999. Post-translation control of Nramp metal transport in yeast. Role of metal ions and the BSD2 gene. J. Biol. Chem. 274:4863–4868
  • Lombardo, A., Carine, K., and Scheffler, I. E.. 1990. Cloning and characterization of the iron-sulfur subunit gene of succinate dehydrogenase from Saccharomyces cerevisiae. J. Biol. Chem. 265:10419–10423
  • McAlister-Henn, L., and Thompson, L. M.. 1987. Isolation and expression of the gene encoding yeast mitochondrial malate dehydrogenase. J. Bacteriol. 169:5157–5166
  • Mumberg, D., Muller, R., and Funk, M.. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122
  • Nakai, K., and Horton, P.. 1999. PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem. Sci. 24:34–36
  • Phillips, J. D., Guo, B., Yu, Y., Brown, F. M., and Leibold, E. A.. 1996. Expression and biochemical characterization of iron regulatory proteins 1 and 2 in Saccharomyces cerevisiae. Biochemistry 35:15704–15714
  • Pufahl, R. A., Singer, C. P., Peariso, K. L., Lin, S. J., Schmidt, P. J., Fahrni, C. J., Culotta, V. C., Penner-Hahn, J. E., and O'Halloran, T. V.. 1997. Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853–856
  • Rae, T. D., Schmidt, P. J., Pufahl, R. A., Culotta, V. C., and O'Halloran, T. V.. 1999. Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808
  • Rotig, A., de Lonlay, P., Chretien, D., Foury, F., Koenig, M., Sidi, D., Munnich, A., and Rustin, P.. 1997. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat. Genet. 17:215–217
  • Rouault, T., and Klausner, R.. 1997. Regulation of iron metabolism in eukaryotes. Curr. Top. Cell. Regul. 35:1–19
  • Rouault, T. A., Haile, D. J., Downey, W. E., Philpott, C. C., Tang, C., Samaniego, F., Chin, J., Paul, I., Orloff, D., Harford, J. B. et al. 1992. An iron-sulfur cluster plays a novel regulatory role in the iron-responsive element binding protein. Biometals 5:131–140
  • Schilke, B., Forster, J., Davis, J., James, P., Walter, W., Laloraya, S., Johnson, J., Miao, B., and Craig, E.. 1996. The cold sensitivity of a mutant of Saccharomyces cerevisiae lacking a mitochondrial heat shock protein 70 is suppressed by loss of mitochondrial DNA. J. Cell Biol. 134:603–613
  • Schilke, B., Voisine, C., Beinert, H., and Craig, E.. 1999. Evidence for a conserved system for iron metabolism in the mitochondria of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 96:10206–10211
  • Schwarz, E., Seytter, T., Guiard, B., and Neupert, W.. 1993. Targeting of cytochrome b2 into the mitochondrial intermembrane space: specific recognition of the sorting signal. EMBO J. 12:2295–2302
  • Seaton, B. L., and Vickery, L. E.. 1994. A gene encoding a DnaK/hsp70 homolog in Escherichia coli. Proc. Natl. Acad. Sci. USA 91:2066–2070
  • Sherman, F., Fink, G. R., and Lawrence, C. W.. 1978. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Silberg, J. J., Hoff, K. G., and Vickery, L. E.. 1998. The Hsc66-Hsc20 chaperone system in Escherichia coli: chaperone activity and interactions with the DnaK-DnaJ-GrpE system. J. Bacteriol. 180:6617–6624
  • Strain, J., Lorenz, C. R., Bode, J., Garland, S., Smolen, G. A., Ta, D. T., Vickery, L. E., and Culotta, V. C.. 1998. Suppressors of superoxide dismutase (SOD1) deficiency in Saccharomyces cerevisiae. Identification of proteins predicted to mediate iron-sulfur cluster assembly. J. Biol. Chem. 273:31138–31144
  • Trumpower, B. L., and Edwards, C. A.. 1979. Purification of a reconstitutively active iron-sulfur protein (oxidation factor) from succinate · cytochrome c reductase complex of bovine heart mitochondria. J. Biol. Chem. 254:8697–8706
  • Urrestarazu, L. A., Borell, C. W., and Bhattacharjee, J. K.. 1985. General and specific controls of lysine biosynthesis in Saccharomyces cerevisiae. Curr. Genet. 9:341–344
  • Valentine, J. S., and Gralla, E. B.. 1997. Delivering copper inside yeast and human cells. Science 278:817–818
  • Vickery, L. E., Silberg, J. J., and Ta, D. T.. 1997. Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci. 6:1047–1056
  • Wach, A., Brachat, A., Pohlmann, R., and Philippsen, P.. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808
  • Weidner, G., Steffan, B., and Brakhage, A. A.. 1997. The Aspergillus nidulans lysF gene encodes homoaconitase, an enzyme involved in the fungus-specific lysine biosynthesis pathway. Mol. Gen. Genet. 255:237–247
  • Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El Bakkoury, M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Davis, R. W. et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906
  • Wong, A., Yang, J., Cavadini, P., Gellera, C., Lonnerdal, B., Taroni, F., and Cortopassi, G.. 1999. The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum. Mol. Genet. 8:425–430
  • Yuvaniyama, P., Agar, J. N., Cash, V. L., Johnson, M. K., and Dean, D. R.. 2000. NifS-directed assembly of a transient [2Fe-2S] cluster within the NifU protein. Proc. Natl. Acad. Sci. USA 97:599–604
  • Zheng, L., Cash, V. L., Flint, D. H., and Dean, D. R.. 1998. Assembly of iron-sulfur clusters. Identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J. Biol. Chem. 273:13264–13272
  • Zheng, L., and Dean, D. R.. 1994. Catalytic formation of a nitrogenase iron-sulfur cluster. J. Biol. Chem. 269:18723–18726
  • Zheng, L., White, R. H., Cash, V. L., Jack, R. F., and Dean, D. R.. 1993. Cysteine desulfurase activity indicates a role for NIFS in metallocluster biosynthesis. Proc. Natl. Acad. Sci. USA 90:2754–2758

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.