40
Views
94
CrossRef citations to date
0
Altmetric
Gene Expression

Saccharomyces cerevisiae RAI1 (YGL246c) Is Homologous to Human DOM3Z and Encodes a Protein That Binds the Nuclear Exoribonuclease Rat1p

, , , , , , & show all
Pages 4006-4015 | Received 16 Nov 1999, Accepted 06 Mar 2000, Published online: 28 Mar 2023

REFERENCES

  • Alani, E., Cao, L., and Kleckner, N.. 1987. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116:541–545
  • Aldrich, T. L., Di Segni, G., McConaughy, B. L., Keen, N. J., Whelen, S., and Hall, B. D.. 1993. Structure of the yeast TAP1 protein: dependence of transcription activation on the DNA context of the target gene. Mol. Cell. Biol. 13:3434–3444
  • Allmang, C., Kufel, J., Chanfreau, G., Mitchell, P., Petfalski, E., and Tollervey, D.. 1999. Functions of the exosome in rRNA, snoRNA and snRNA synthesis. EMBO J. 18:5399–5410
  • Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P.. 1999. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 13:2148–2158
  • Amberg, D. C., Goldstein, L. A., and Cole, C. N.. 1992. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6:1173–1189
  • Anderson, J., and Parker, R.. 1998. The 3′ to 5′ degradation of yeast mRNAs is a general mechanism for mRNA turnover that requires the SKI2 DEVH box protein and 3′ to 5′ exonucleases of the exosome complex. EMBO J. 17:1497–1506
  • Ausubel, F. M.. 1988. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y
  • Bashkirov, V. I., Scherthan, H., Solinger, J. A., Buerstedde, J. M., and Heyer, W. D.. 1997. A mouse cytoplasmic exoribonuclease (mXRN1p) with preference for G4 tetraplex substrates. J. Cell Biol. 136:761–773
  • Bradford, M. M.. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254
  • Brown, J. T., Bai, X., and Johnson, A. W.. 2000. The yeast antiviral proteins Ski2p, Ski3p and Ski8p form a heterotrimeric complex. RNA 6:449–457
  • Dangel, A. W., Shen, L., Mendoza, A. R., Wu, L. C., and Yu, C. Y.. 1995. Human helicase gene SKI2W in the HLA class III region exhibits striking structural similarities to the yeast antiviral gene SKI2 and to the human gene KIAA0052: emergence of a new gene family. Nucleic Acids Res. 23:2120–2126
  • Di Segni, G., McConaughy, B. L., Shapiro, R. A., Aldrich, T. L., and Hall, B. D.. 1993. TAP1, a yeast gene that activates the expression of a tRNA gene with a defective internal promoter. Mol. Cell. Biol. 13:3424–3433
  • Doktycz, M. J., Larimer, F. W., Pastrnak, M., and Stevens, A.. 1998. Comparative analyses of the secondary structures of synthetic and intracellular yeast MFA2 mRNAs. Proc. Natl. Acad. Sci. USA 95:14614–14621
  • Efstratiadis, A., Vournakis, J. N., Donis, K. H., Chaconas, G., Dougall, D. K., and Kafatos, F. C.. 1977. End labeling of enzymatically decapped mRNA. Nucleic Acids Res. 4:4165–4174
  • Gietz, D., St. John, A., Woods, R. A., and Schiestl, R. H.. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425
  • Henry, Y., Wood, H., Morrissey, J. P., Petfalski, E., Kearsey, S., and Tollervey, D.. 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13:2452–2463
  • Ho, J., and Johnson, A. W.. 1999. NMD3 encodes an essential cytoplasmic protein required for stable 60S ribosomal subunits in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:2389–2399
  • Hsu, C. L., and Stevens, A.. 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13:4826–4835
  • Johnson, A. W.. 1997. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 17:6122–6130
  • Johnson, A. W., and Kolodner, R. D.. 1991. Strand exchange protein 1 from Saccharomyces cerevisiae. A novel multifunctional protein that contains DNA strand exchange and exonuclease activities. J. Biol. Chem. 266:14046–14054
  • Johnson, A. W., and Kolodner, R. D.. 1995. Synthetic lethality of sep1 (xrn1) ski2 and sep1 (xrn1) ski3 mutants of Saccharomyces cerevisiae is independent of killer virus and suggests a general role for these genes in translation control. Mol. Cell. Biol. 15:2719–2727
  • Kaiser, C., Michaelis, S., and Mitchell, A.. 1994. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Kenna, M., Stevens, A., McCammon, M., and Douglas, M. G.. 1993. An essential yeast gene with homology to the exonuclease-encoding XRN1/KEM1 gene also encodes a protein with exoribonuclease activity. Mol. Cell. Biol. 13:341–350
  • Matsudaira, P.. 1987. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262:10035–10038
  • Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D.. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91:457–466
  • Muhlrad, D., Decker, C. J., and Parker, R.. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev. 8:855–866
  • Muhlrad, D., and Parker, R.. 1994. Premature translational termination triggers mRNA decapping. Nature 370:578–581
  • Ohtake, Y., and Wickner, R. B.. 1995. Yeast virus propagation depends critically on free 60S ribosomal subunit concentration. Mol. Cell. Biol. 15:2772–2781
  • Page, A. M., Davis, K., Molineux, C., Kolodner, R. D., and Johnson, A. W.. 1998. Mutational analysis of exoribonuclease I from Saccharomyces cerevisiae. Nucleic Acids Res. 26:3707–3716
  • Petfalski, E., Dandekar, T., Henry, Y., and Tollervey, D.. 1998. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol. Cell. Biol. 18:1181–1189
  • Poole, T. L., and Stevens, A.. 1995. Comparison of features of the RNase activity of 5′-exonuclease-1 and 5′-exonuclease-2 of Saccharomyces cerevisiae. Nucleic Acids Symp. Ser. 33:79–81
  • Qu, L. H., Henras, A., Lu, Y. J., Zhou, H., Zhou, W. X., Zhu, Y. Q., Zho, J., Henry, Y., Caizergues, F. M., and Bachellerie, J. P.. 1999. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol. Cell. Biol. 19:1144–1158
  • Qu, X., Yang, Z., Zhang, S., Shen, L., Dangel, A. W., Hughes, J. H., Redman, K. L., Wu, L. C., and Yu, C. Y.. 1998. The human DEVH-box protein SkiZw from the HLA is localized in nucleoli and ribosomes. Nucleic Acids Res. 26:4068–4077
  • Shobuike, T., Sugano, S., Yamashita, T., and Ikeda, H.. 1995. Characterization of cDNA encoding mouse homolog of fission yeast dhp1+ gene: structural and functional conservation. Nucleic Acids Res. 23:357–361
  • Shobuike, T., Sugano, S., Yamashita, T., and Ikeda, H.. 1997. Cloning and characterization of mouse Dhm2 cDNA, a functional homolog of budding yeast SEP1. Gene 191:161–166
  • Stevens, A.. 1980. Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′→3′ mode of hydrolysis. J. Biol. Chem. 255:3080–3085
  • Stevens, A., Hsu, C. L., Isham, K. R., and Larimer, F. W.. 1991. Fragments of the internal transcribed spacer 1 of pre-rRNA accumulate in Saccharomyces cerevisiae lacking 5′→3′ exoribonuclease 1. J. Bacteriol. 173:7024–7028
  • Stevens, A., and Maupin, M. K.. 1987. A 5′→3′ exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252:339–347
  • Stevens, A., and Poole, T. L.. 1995. 5′-Exonuclease-2 of Saccharomyces cerevisiae. Purification and features of ribonuclease activity with comparison to 5′-exonuclease-1. J. Biol. Chem. 270:16063–16069
  • Toone, W. M., Johnson, A. L., Banks, G. R., Toyn, J. H., Stuart, D., Wittenberg, C., and Johnston, L. H.. 1995. Rme1, a negative regulator of meiosis, is also a positive activator of G1 cyclin gene expression. EMBO J. 14:5824–5832
  • Venema, J., and Tollervey, D.. 1995. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11:1629–1650
  • Villa, T., Ceradini, F., Presutti, C., and Bozzoni, I.. 1998. Processing of the intron-encoded U18 small nucleolar RNA in the yeast Saccharomyces cerevisiae relies on both exo- and endonucleolytic activities. Mol. Cell. Biol. 18:3376–3383
  • Winzeler, E. A., Shoemaker, D. D., Astromoff, A., Liang, H., Anderson, K., Andre, B., Bangham, R., Benito, R., Boeke, J. D., Bussey, H., Chu, A. M., Connelly, C., Davis, K., Dietrich, F., Dow, S. W., El, B. M., Foury, F., Friend, S. H., Gentalen, E., Giaever, G., Hegemann, J. H., Jones, T., Laub, M., Liao, H., Davis, R. W. et al. 1999. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906
  • Yang, Z., Shen, L., Dangel, A. W., Wu, L. C., and Yu, C. Y.. 1998. Four ubiquitously expressed genes, RD (D6S45)-SKI2W (SKIV2L)-DOM3Z-RP1 (D6S60E), are present between complement component genes factor B and C4 in the class III region of the HLA. Genomics 53:338–347

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.