125
Views
208
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Phosphorylation of SOX9 by Cyclic AMP-Dependent Protein Kinase A Enhances SOX9's Ability To Transactivate aCol2a1 Chondrocyte-Specific Enhancer

, , &
Pages 4149-4158 | Received 03 Feb 2000, Accepted 06 Mar 2000, Published online: 28 Mar 2023

REFERENCES

  • Aronheim, A., Zandi, E., Hennemann, H., Elledge, S. J., and Karin, M.. 1997. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interaction. Mol. Cell. Biol. 17:3094–3102
  • Bell, D. M., Leung, K. K. H., Whearley, S. C., Ng, L. J., Zhou, S., Ling, K. W., Sham, M. H., Koopman, P., Tam, P. P. L., and Cheah, K. S. E.. 1997. Sox9 directly regulates the type-II collagen gene. Nat. Genet. 16:174–178
  • Bi, W., Deng, J., Zhang, Z., Behringer, R. R., and de Crombrugghe, B.. 1999. Sox9 is required for cartilage formation. Nat. Genet. 22:85–89
  • Boulikas, T.. 1995. Phosphorylation of transcription factors and control of the cell cycle. Crit. Rev. Eukaryot. Gene Expression 5:1–77
  • Bridgewater, L. C., Lefebvre, V., and de Crombrugghe, B.. 1998. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J. Biol. Chem. 273:14998–15006
  • Desclozeaux, M., Poulat, F., de Santa Barbara, P., Capony, J. P., Turowski, P., Jay, P., Mejean, C., Moniot, B., Boizet, B., and Berta, P.. 1998. Phosphorylation of an N-terminal motif enhances DNA-binding activity of the human SRY protein. J. Biol. Chem. 273:7988–7995
  • Fan, C., Porter, J. A., Chiang, C., Chang, D. T., Beachy, P. A., and Tessier-Lavigne, M.. 1995. Long-range sclerotome induction by Sonic hedgehog: direct role of the amino-terminal cleavage product and modulation by the cyclic AMP signaling pathway. Cell 81:457–465
  • Foster, J. W., Dominguez-Steglich, M. A., Guioli, S., Kwok, C., Weller, P. A., Stevanovic, M., Weissenbach, J., Mansour, S., Young, I. D., Goodfellow, P. N., Brook, J. D., and Schafer, A. J.. 1994. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530
  • Hammerschmidt, M., Bitgood, M. J., and McMahon, A. P.. 1996. Protein kinase A is a common negative regulator of hedgehog signaling in the vertebrate embryo. Genes Dev. 15:647–658
  • Houston, C. S., Opitz, J. M., Spranger, J. W., Macpherson, R. I., Reed, M. H., Gilbert, E. F., Herrman, J., and Schinzel, A.. 1993. The campomelic syndrome: review, report of 17 cases, and follow-up on the currently 17-year-old boy first reported by Maroteaux et al. in 1971. Am. J. Med. Genet. 15:2–28
  • Jüppner, H., Abou-Samra, A., Freeman, M., Kong, X., Schipani, E., Richards, J., Kolakowski, L. F., Hock, J., Potts, J. T., Kronenberg, H. M., and Segre, G. V.. 1991. A G protein-linked receptor for parathyroid hormone and parathyroid hormone-related peptide. Science 254:1024–1026
  • Kapaplis, A. C., Luz, A., Glowacki, J., Bronson, R. T., Tybulewicz, V. L. J., Kronenberg, H. M., and Mulligan, R. C.. 1994. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 8:277–289
  • Kent, J., Wheatley, S. C., Andrews, J. E., Sinclair, A. H., and Koopman, P.. 1996. A male-specific role for SOX9 in vertebrate sex determination. Development 122:2813–2822
  • Kosher, R. A., Gay, S. W., Kamanitz, J. R., Kulyk, W. M., Rodger, B. J., Sai, S., Tanaka, T., and Tanzer, M. L.. 1986. Cartilage proteoglycan core protein gene expression during limb cartilage differentiation. Dev. Biol. 118:112–117
  • Kwok, C., Weller, P. A., Guioli, S., Foster, J. W., Mansour, S., Zuffardi, O., Punett, H. H., Dominguez-Steglich, M. A., Brook, J. D., Young, I. D., Goodfellow, P. N., and Schafer, A. J.. 1995. Mutations in SOX9, the gene responsible for campomelic dysplasia and autosomal sex reversal. Am. J. Hum. Genet. 57:1028–1036
  • Lanske, B., Karaplis, A. C., Lee, K., Luz, A., Vortkamp, A., Pirro, A., Karperien, M., Defice, L. H. K., Ho, C., Mulligan, R. C., Alou-Samra, A., Juppner, H., Segre, G. V., and Kronenberg, H. M.. 1996. PTH/PTHrP receptor in early development and indian-hedgehog-regulated bone growth. Science 273:663–666
  • Lee, K., Lanske, B., Karaplis, A. C., Deeds, J. D., Kohno, H., Nissenson, R. A., Kronenberg, H. M., and Segre, G. V.. 1996. Parathyroid hormone-related peptide delays terminal differentiation of chondrocytes during endochondral bone development. Endocrinology 137:5109–5118
  • Lee, Y. S., and Chuong, C. M.. 1997. Activation of protein kinase A is involved in both BMP-2- and cyclic AMP-induced chondrogenesis. J. Cell. Physiol. 170:153–165
  • Lefebvre, V., and de Crombrugghe, B.. 1998. Toward understanding SOX9 function in chondrocyte differentiation. Matrix Biol. 16:529–540
  • Lefebvre, V., Huang, W., Harley, V. R., Goodfellow, P. N., and de Crombrugghe, B.. 1997. SOX9 is a potent activator of the chondrocyte-specific enhancer of the proα1(II) collagen gene. Mol. Cell. Biol. 17:2336–2346
  • Lefebvre, V., Zhou, G., Mukhopadhyay, K., Smith, C. N., Zhang, Z., Eberspaecher, H., Zhou, X., Sinha, S., Maity, S. N., and de Crombrugghe, B.. 1996. An 18-base-pair sequence in the mouse proα1(II) collagen gene is sufficient for cartilage expression and binds nuclear proteins that are selectively expressed in chondrocytes. Mol. Cell. Biol. 16:4512–4523
  • Lefebvre, V., Li, P., and de Crombrugghe, B.. 1998. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 17:5718–5733
  • Malemud, C. J., Mills, T. M., Shuckett, R., and Papay, R. S.. 1986. Stimulation of sulfated-proteoglycan synthesis by forskolin in monolayer cultures of rabbit articular chondrocytes. J. Cell. Physiol. 129:51–59
  • Mansour, S., Hall, C. M., Pembrey, M. E., and Young, I. D.. 1995. A clinical and genetic study of campomelic dysplasia. J. Med. Genet. 32:415–420
  • Meyer, J., Südbeck, P., Held, M., Wagner, T., Schmitz, M. L., Bricarelli, F. D., Eggermont, E., Friedrich, U., Haas, O. A., Kobelt, A., Leroy, J. G., Van Maldergem, L., Michel, E., Mitulla, B., Pfeiffer, R. A., Schinzel, A., Schmidt, H., and Scherer, G.. 1997. Mutational analysis of the SOX9 gene in campomelic dysplasia and autosomal sex reversal: lack of genotype/phenotype correlations. Hum. Mol. Genet. 6:91–98
  • Morais da Silva, S., Hacker, A., Harley, V., Goodfellow, P., Swain, A., and Lovell-Badge, R.. 1996. Sox9 expression during gonadal development implies a conserved role for the gene in testis differentiation in mammals and birds. Nat. Genet. 13:62–68
  • Ng, L.-J., Wheatley, S., Muscat, G. E. O., Conway-Campbell, J., Bowles, J., Wright, E., Bell, D. M., Tam, P. P. L., Cheah, K. S. E., and Koopman, P.. 1997. Sox9 binds DNA, activates transcription, and coexpresses with type II collagen during chondrogenesis in the mouse. Dev. Biol. 183:108–121
  • Rodgers, B. J., Kulyk, W. M., and Kosher, R. A.. 1989. Stimulation of limb cartilage differentiation by cyclic AMP is dependent on cell density. Cell Differ. Dev. 28:179–187
  • Schipani, E., Lanske, B., Hunzelman, J., Luz, A., Koracs, C. S., Lee, K., Pirro, A., Kronenberg, H. M., and Jüppner, H.. 1997. Targeted expression of constitutively active receptors for parathyroid hormone and parathyroid hormone-related peptide delays endochondral bone formation and rescues mice that lack parathyroid hormone-related peptide. Proc. Natl. Acad. Sci. USA 94:13689–13694
  • Sinha, S., Maity, S. N., Lu, J., and de Crombrugghe, B.. 1995. Recombinant rat CBF-C, the third subunit of CBF/NFY, allows formation of a protein-DNA complex with CBF-A and CBF-B and with yeast HAP2 and HAP3. Proc. Natl. Acad. Sci. USA 92:1624–1628
  • Südbeck, P., Schmitz, L., Baeuerle, P. A., and Scherer, G.. 1996. Sex reversal by loss of the C-terminal transactivation domain of human SOX9. Nat. Genet. 13:230–232
  • Südbeck, P., and Scherer, G.. 1997. Two independent nuclear localization signals are present in the DNA-binding high-mobility-group domains of SRY and SOX9. J. Biol. Chem. 272:27848–27852
  • Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M., Zimmer, J., Pasantes, J., Dagna Bricarelli, F., Keutel, J., Hustert, E., Wolf, U., Tommerup, N., Schempp, W., and Scherer, G.. 1994. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79:1111–1120
  • Wirth, J., Wagner, T., Meyer, J., Pfeiffer, R. A., Tietze, H.-U., Schempp, W., and Scherer, G.. 1996. Translocation breakpoints in three patients with campomelic dysplasia and autosomal sex reversal map more than 130 kb from SOX9. Hum. Genet. 97:186–193
  • Wright, E. M., Snopek, B., and Koopman, P.. 1993. Seven new members of the SOX gene family expressed during mouse development. Nucleic Acids Res. 21: 744
  • Wright, E., Hargrave, M. R., Christiansen, J., Cooper, L., Kun, J., Evans, T., Gangadharan, U., Greenfield, A., and Koopman, P.. 1995. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat. Genet. 9:15–20
  • Zhao, Q., Eberspaecher, H., Lefebvre, V., and de Crombrugghe, B.. 1997. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn. 209:377–386

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.