35
Views
208
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Involvement of the MKK6-p38γ Cascade in γ-Radiation-Induced Cell Cycle Arrest

, , , , , , , & show all
Pages 4543-4552 | Received 10 Nov 1999, Accepted 03 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Abbott, D. W., and Holt, J. T.. 1999. Mitogen-activated protein kinase kinase 2 activation is essential for progression through the G2/M checkpoint arrest in cells exposed to ionizing radiation. J. Biol. Chem. 274:2732–2742
  • Abrieu, A., Fisher, D., Simon, M. N., Doree, M., and Picard, A.. 1997. MAPK inactivation is required for the G2 to M-phase transition of the first mitotic cell cycle. EMBO J. 16:6407–6413
  • Aldridge, D. R., and Radford, I. R.. 1998. Explaining differences in sensitivity to killing by ionizing radiation between human lymphoid cell lines. Cancer Res. 58:2817–2824
  • Baldin, V., Cans, C., Knibiehler, M., and Ducommun, B.. 1997. Phosphorylation of human CDC25B phosphatase by CDK1-cyclin A triggers its proteasome-dependent degradation. J. Biol. Chem. 272:32731–32734
  • Blasina, A., de Weyer, I. V., Laus, M. C., Luyten, W. H., Parker, A. E., and McGowan, C. H.. 1999. A human homologue of the checkpoint kinase Cds1 directly inhibits Cdc25 phosphatase. Curr. Biol. 9:1–10
  • Blasina, A., Paegle, E. S., and McGowan, C. H.. 1997. The role of inhibitory phosphorylation of CDC2 following DNA replication block and radiation-induced damage in human cells. Mol. Biol. Cell 8:1013–1023
  • Blasina, A., Price, B. D., Turenne, G. A., and McGowan, C. H.. 1999. Caffeine inhibits the checkpoint kinase ATM. Curr. Biol. 9:1135–1138
  • Brown, A. L., Lee, C. H., Schwarz, J. K., Mitiku, N., Piwnica-Worms, H., and Chung, J. H.. 1999. A human Cds1-related kinase that functions downstream of ATM protein in the cellular response to DNA damage. Proc. Natl. Acad. Sci. USA 96:3745–3750
  • Chaturvedi, P., Eng, W. K., Zhu, Y., Mattern, M. R., Mishra, R., Hurle, M. R., Zhang, X., Annan, R. S., Lu, Q., Faucette, L. F., Scott, G. F., Li, X., Carr, S. A., Johnson, R. K., Winkler, J. D., and Zhou, B. B.. 1999. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene 18:4047–4054
  • Coleman, T. R., and Dunphy, W. G.. 1994. Cdc2 regulatory factors. Curr. Opin. Cell Biol. 6:877–882
  • Conrad, P. W., Rust, R. T., Han, J., Millhorn, D. E., and Beitner-Johnson, D.. 1999. Selective activation of p38alpha and p38gamma by hypoxia. Role in regulation of cyclin D1 by hypoxia in PC12 cells. J. Biol. Chem. 274:23570–23576
  • Cowley, S., Paterson, H., Kemp, P., and Marshall, C. J.. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852
  • Derijard, B., Raingeaud, J., Barrett, T., Wu, I.-H., Han, J., Ulevitch, R. J., and Davis, R. J.. 1995. Independent human MAP kinase signal transduction pathways defined by MEK and MKK isoforms. Science 267:682–685
  • Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R.. 1995. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 92:7686–7689
  • Furnari, B., Blasina, A., Boddy, M. N., McGowan, C. H., and Russell, P.. 1999. Cdc25 inhibited in vivo and in vitro by checkpoint kinases Cds1 and Chk1. Mol. Biol. Cell 10:833–845
  • Furnari, B., Rhind, N., and Russell, P.. 1997. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 277:1495–1497
  • Goedert, M., Cuenda, A., Craxton, M., Jakes, R., and Cohen, P.. 1997. Activation of the novel stress-activated protein kinase SAPK4 by cytokines and cellular stresses is mediated by SKK3 (MKK6); comparison of its substrate specificity with that of other SAP kinases. EMBO J. 16:3563–3571
  • Hain, J., Weller, E., Jung, T., and Burkart, W.. 1996. Effects of ionizing- and UV B-radiation on proteins controlling cell cycle progression in human cells: comparison of the MCF-7 adenocarcinoma and the SCL-2 squamous cell carcinoma cell line. Int. J. Radiat. Biol. 70:261–271
  • Han, J., Jiang, Y., Li, Z., Kravchenko, V. V., and Ulevitch, R. T.. 1997. Activation of the transcription factor MEF2C by the MAP kinase p38 in inflammation. Nature 386:296–299
  • Han, J., Lee, J. D., Tobias, P. S., and Ulevitch, R. J.. 1993. Endotoxin induces rapid protein tyrosine phosphorylation in 70Z/3 cells expressing CD14. J. Biol. Chem. 268:25009–25014
  • Han, J., Lee, J.-D., Bibbs, L., and Ulevitch, R. J.. 1994. A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811
  • Hartwell, L. H., and Weinert, T. A.. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634
  • Hasegawa, M., Cuenda, A., Spillantini, M. G., Thomas, G. M., Buee-Scherrer, V., Cohen, P., and Goedert, M.. 1999. Stress-activated protein kinase-3 interacts with the PDZ domain of alpha1-syntrophin. A mechanism for specific substrate recognition. J. Biol. Chem. 274:12626–12631
  • He, L., Yu, J. X., Liu, L., Buyse, I. M., Wang, M. S., Yang, Q. C., Nakagawara, A., Brodeur, G. M., Shi, Y. E., and Huang, S.. 1998. RIZ1, but not the alternative RIZ2 product of the same gene, is underexpressed in breast cancer, and forced RIZ1 expression causes G2-M cell cycle arrest and/or apoptosis. Cancer Res. 58:4238–4244
  • Huang, S., Jiang, Y., Li, Z., Nishida, E., Mathias, P., Lin, S., Ulevitch, R. J., Nemerow, G. R., and Han, J.. 1997. Apoptosis signaling pathway in T cells is composed of ICE/Ced-3 family proteases and MAP kinase kinase 6b. Immunity 6:739–749
  • Jiang, Y., Chen, C., Li, Z., Guo, W., Gegner, J. A., Lin, S., and Han, J.. 1996. Characterization of the structure and function of a new mitogen-activated protein kinase (p38β). J. Biol. Chem. 271:17920–17926
  • Jin, P., Gu, Y., and Morgan, D. O.. 1996. Role of inhibitory CDC2 phosphorylation in radiation-induced G2 arrest in human cells. J. Cell Biol. 134:963–970
  • Kato, Y., Kravchenko, V., Tapping, R., Han, J., Ulevitch, R., and Lee, J.. 1997. BMK1/ERK5 regulates serum-induced early gene expression through transcription factor MEF2C. EMBO J. 16:7054–7066
  • Kato, Y., Tapping, R. I., Huang, S., Watson, M. H., Ulevitch, R. J., and Lee, J. D.. 1998. Bmk1/Erk5 is required for cell proliferation induced by epidermal growth factor. Nature 395:713–716
  • Kohn, K., Jackman, J., and O'Connor, P.. 1994. Cell cycle control and cancer chemotherapy. J. Cell. Biochem. 54:440–452
  • Lau, C. C., and Pardee, A. B.. 1982. Mechanism by which caffeine potentiates lethality of nitrogen mustard. Proc. Natl. Acad. Sci. USA 79:2942–2946
  • Lavin, M. F., and Shiloh, Y.. 1997. The genetic defect in ataxia-telangiectasia. Annu. Rev. Immunol. 15:177–202
  • Lechner, C., Zahalka, M. A., Giot, J.-F., Moler, N. P. H., and Ullrich, A.. 1996. ERK6, a mitogen-activated protein kinase involved in C2C12 myoblast differentiation. Proc. Natl. Acad. Sci. USA 93:4355–4359
  • Lee, J. C., Laydon, J. T., McDonnell, P. C., Gallagher, T. F., Kumar, S., Green, D., McNulty, D., Blumenthal, M. J., Heyes, R. J., Landvatter, S. W., Strickler, J. E., McLaughlin, M. M., Siemens, I., Fisher, S., Livi, G. P., White, J. R., Adams, J. L., and Young, P. R.. 1994. Identification and characterization of a novel protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature 372:739–746
  • Li, Z., Jiang, Y., Ulevitch, R. J., and Han, J.. 1996. The primary structure of p38gamma: a new member of p38 group of MAP kinase. Biochem. Biophys. Res. Commun. 228:334–340
  • Lock, R. B., and Ross, W. E.. 1990. Inhibition of p34cdc2 kinase activity by etoposide or irradiation as a mechanism of G2 arrest in Chinese hamster ovary cells. Cancer Res. 50:3761–3766
  • Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P.. 1999. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397:172–175
  • Matsuoka, S., Huang, M., and Elledge, S. J.. 1998. Linkage of ATM to cell cycle regulation by the Chk2 protein kinase. Science 282:1893–1897
  • McGowan, C. H., and Russell, P.. 1995. Cell cycle regulation of human WEE1. EMBO J. 14:2166–2175
  • Mertens, S., Craxton, M., and Goedert, M.. 1996. SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett. 383:273–276
  • Millar, J. B., and Russell, P.. 1992. The cdc25 M-phase inducer: an unconventional protein phosphatase. Cell 68:407–410
  • Molnar, A., Theodoras, A. M., Zon, L. I., and Kyriakis, J. M.. 1997. Cdc42Hs, but not Rac1, inhibits serum-stimulated cell cycle progression at G1/S through a mechanism requiring p38/RK. J. Biol. Chem. 272:13229–13235
  • Mueller, P. R., Coleman, T. R., Kumagai, A., and Dunphy, W. G.. 1995. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science 270:86–90
  • Murakami, H., and Okayama, H.. 1995. A kinase from fission yeast responsible for blocking mitosis in S phase. Nature 374:871–819
  • Nefsky, B., and Beach, D.. 1996. Pub1 acts as an E6-AP-like protein ubiquitin ligasse in the degradation of Cdc25. EMBO J. 15:1301–1312
  • New, L., and Han, J.. 1998. The p38 MAP kinase pathway and it function. Trends Cardiovasc. Med. 8:220–228
  • Norbury, C., Blow, J., and Nurse, P.. 1991. Regulatory phosphorylation of the p34cdc2 protein kinase in vertebrates. EMBO J. 10:3321–3329
  • Nurse, P.. 1997. Checkpoint pathways come of age. Cell 91:865–867
  • O'Connor, P., and Kohn, K.. 1992. A fundamental role for cell cycle regulation in the chemosensitivity of cancer cells? Semin. Cancer Biol. 3:409–416
  • Ono, K., and Han, J.. 2000. The p38 signaling transduction pathway: activation and function. Cell. Signal. 12:1–13
  • Palmer, A., Gavin, A. C., and Nebreda, A. R.. 1998. A link between MAP kinase and p34(cdc2)/cyclin B during oocyte maturation: p90(rsk) phosphorylates and inactivates the p34(cdc2) inhibitory kinase Myt1. EMBO J. 17:5037–5047
  • Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms, H.. 1997. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505
  • Poon, R. Y., Chau, M. S., Yamashita, K., and Hunter, T.. 1997. The role of Cdc2 feedback loop control in the DNA damage checkpoint in mammalian cells. Cancer Res. 57:5168–5178
  • Sanchez, Y., Wong, C., Thoma, R. S., Richman, R., Wu, Z., Piwnica-Worms, H., and Elledge, S. J.. 1997. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 277:1497–1501
  • Shafman, T. D., Saleem, A., Kyriakis, J., Weichselbaum, R., Kharbanda, S., and Kufe, D. W.. 1995. Defective induction of stress-activated protein kinase activity in ataxia-telangiectasia cells exposed to ionizing radiation. Cancer Res. 55:3242–3245
  • Takenaka, K., Moriguchi, T., and Nishida, E.. 1998. Activation of the protein kinase p38 in the spindle assembly checkpoint and mitotic arrest. Science 280:599–602
  • Walworth, N., Davey, S., and Beach, D.. 1993. Fission yeast chk1 protein kinase links the rad checkpoint pathway to cdc2. Nature 363:368–371
  • Weichselbaum, R. R., Beckett, M. A., Dahlberg, W., and Dritschilo, A.. 1988. Heterogeneity of radiation response of a parent human epidermoid carcinoma cell line and four clones. Int. J. Radiat. Oncol. Biol. Phys. 14:907–912
  • Weichselbaum, R. R., Dahlberg, W., Beckett, M., Karrison, T., Miller, D., Clark, J., and Ervin, T. J.. 1986. Radiation-resistant and repair-proficient human tumor cells may be associated with radiotherapy failure in head- and neck-cancer patients. Proc. Natl. Acad. Sci. USA 83:2684–2688
  • Wright, J. H., Munar, E., Jameson, D. R., Andreassen, P. R., Margolis, R. L., Seger, R., and Krebs, E. G.. 1999. Mitogen-activated protein kinase kinase activity is required for the G2/M transition of the cell cycle in mammalian fibroblasts. Proc. Natl. Acad. Sci. USA 96:11335–11340
  • Zhao, M., New, L., Kravchenko, V. V., Kato, Y., Gram, H., Di Padova, F., Olson, E. N., Ulevitch, R. J., and Han, J.. 1999. Regulation of the MEF2 family of transcription factors by p38. Mol. Cell. Biol. 19:21–30

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.