19
Views
81
CrossRef citations to date
0
Altmetric
Gene Expression

Upf1p Control of Nonsense mRNA Translation Is Regulated by Nmd2p and Upf3p

, , &
Pages 4591-4603 | Received 20 Oct 1999, Accepted 04 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Altamura, N., Groudinsky, O., Dujardin, G., and Slonimski, P. P.. 1992. NAM7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae. J. Mol. Biol. 224:575–587
  • Applequist, S. E., Selg, M., Roman, C., and Jack, H. M.. 1997. Cloning and characterization of HUPF1, a human homolog of the Saccharomyces cerevisiae nonsense mRNA-reducing UPF1 protein. Nucleic Acids Res. 25:814–821
  • Atkin, A. L., Schenkman, L. R., Eastham, M., Dahlseid, J. N., Lelivelt, M. J., and Culbertson, M. R.. 1997. Relationship between yeast polyribosomes and the Upf proteins required for nonsense mRNA decay. J. Biol. Chem. 272:22163–22172
  • Beelman, C. A., Stevens, A., Caponigro, G., LaGrandeur, T. E., Hatfield, L., and Parker, R.. 1996. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382:642–646
  • Caponigro, G., and Parker, R.. 1996. Mechanisms and control of mRNA turnover in Saccharomyces cerevisiae. Microbiol. Rev. 60:233–249
  • Chin, K., and Pyle, A. M.. 1995. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5′-splice site selection. RNA 1:391–406
  • Cui, Y., Hagan, K. W., Zhang, S., and Peltz, S. W.. 1995. Identification and characterization of genes that are required for the accelerated degradation of mRNAs containing a premature translational termination codon. Genes Dev. 9:423–436
  • Cui, Y., Dinman, J. D., and Peltz, S. W.. 1996. Mof4-1 is an allele of the UPF1/IFS2 gene which affects both mRNA turnover and −1 ribosomal frameshifting efficiency. EMBO J. 15:5726–5736
  • Culbertson, M. R., Underbrink, K. M., and Fink, G. R.. 1980. Frameshift suppression in Saccharomyces cerevisiae. II. Genetic properties of group II suppressors. Genetics 95:833–853
  • Czaplinski, K., Weng, Y., Hagan, K. W., and Peltz, S. W.. 1995. Purification and characterization of the Upf1p: a factor involved in mRNA turnover. RNA 1:610–623
  • Czaplinski, K., Ruiz-Echevarria, M. J., Paushkin, S. V., Han, X., Weng, Y., Perlick, H. A., Dietz, H. C., Ter-Avanesyan, M. D., and Peltz, S. W.. 1998. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12:1665–1677
  • Feinberg, A. P., and Vogelstein, B.. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13
  • Friest, W., Sternbach, H., and Cramer, F.. 1996. Phenylalanyl-tRNA-synthetase from yeast and its discrimination of 19 amino acids in aminoacylation of tRNA(Phe)-C-C-A and tRNA(Phe)-C-C-A(3′NH2). Eur. J. Biochem. 240:526–531
  • Gottesman, S., Wickner, R., and Maurizi, M. R.. 1997. Protein quality control: triage by chaperones and proteases. Genes Dev. 11:815–823
  • Guthrie, C., and Fink, G. R.. 1991. Methods in enzymology: molecular biology of Saccharomyces cerevisiae. Academic Press, Inc., New York, N.Y
  • Gygi, S. P., Rochon, Y., Franza, B. R., and Aebersold, R.. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19:1720–1730
  • Hagan, K. W., Ruiz-Echevarria, M. J., Quan, Y., and Peltz, S. W.. 1995. Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol. Cell. Biol. 15:809–823
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • He, F., Peltz, S. W., Donahue, J. L., Rosbash, M., and Jacobson, A.. 1993. Stabilization and ribosome association of unspliced pre-mRNAs in a yeast upf1− mutant. Proc. Natl. Acad. Sci. USA 90:7034–7038
  • He, F., and Jacobson, A.. 1995. Identification of a novel component of the nonsense-mediated mRNA decay pathway using an interacting protein screen. Genes Dev. 9:437–454
  • He, F., Brown, A. H., and Jacobson, A.. 1996. Interaction between Nmd2p and Upf1p is required for activity but not for dominant-negative inhibition of the nonsense-mediated mRNA decay pathway in yeast. RNA 2:153–170
  • He, F., Brown, A. H., and Jacobson, A.. 1997. Upf1p, Nmd2p, and Upf3p are interacting components of the yeast nonsense-mediated mRNA decay pathway. Mol. Cell. Biol. 17:1580–1594
  • Hereford, L. M., and Rosbash, M.. 1977. Number and distribution of polyadenylated RNA sequences in yeast. Cell 10:453–462
  • Herrick, D., Parker, R., and Jacobson, A.. 1990. Identification and comparison of stable and unstable mRNAs in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2269–2284
  • Heyer, W. D., Johnson, A. W., Reinhart, U., and Kolodner, R. D.. 1995. Regulation and intracellular localization of Saccharomyces cerevisiae strand exchange protein 1 (Sep1/Xrn1/Kem1), a multifunctional exonuclease. Mol. Cell. Biol. 15:2728–2736
  • Hoffmann, W.. 1985. Molecular characterization of the CAN1 locus in Saccharomyces cerevisiae. A transmembrane protein without N-terminal hydrophobic signal sequence. J. Biol. Chem. 260:11831–11837
  • Hsu, C. L., and Stevens, A.. 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol. Cell. Biol. 13:4826–4835
  • Hurt, D. J., Wang, S. S., Lin, Y. H., and Hopper, A. K.. 1987. Cloning and characterization of LOS1, a Saccharomyces cerevisiae gene that affects tRNA splicing. Mol. Cell. Biol. 3:1208–1216
  • Jacobson, A., and Peltz, S. W.. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65:693–739
  • Jeon, C., and Agarwal, K.. 1996. Fidelity of RNA polymerase II transcription controlled by elongation factor TFIIS. Proc. Natl. Acad. Sci. USA 93:13677–13682
  • Koonin, E. V.. 1992. A new group of putative RNA helicases. Trends Biochem. Sci. 17:495–497
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • LaGrandeur, T. E., and Parker, R.. 1998. Isolation and characterization of Dcp1p, the yeast mRNA decapping enzyme. EMBO J. 17:1487–1496
  • Lee, B. S., and Culbertson, M. R.. 1995. Identification of an additional gene required for eukaryotic nonsense mRNA turnover. Proc. Natl. Acad. Sci. USA 92:10354–10358
  • Leeds, P., Peltz, S. W., Jacobson, A., and Culbertson, M. R.. 1991. The product of the yeast UPF1 gene is required for rapid turnover of mRNAs containing a premature translational termination codon. Genes Dev. 5:2303–2314
  • Leeds, P., Wood, J. M., Lee, B. S., and Culbertson, M. R.. 1992. Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2165–2177
  • Lelivelt, M. J., and Culbertson, M. R.. 1999. Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome. Mol. Cell. Biol. 10:6710–6719
  • Mangus, D. A., and Jacobson, A.. 1999. Linking turnover and translation: assessing the polyribosomal association of mRNA decay factors and degradative intermediates. Methods 17:28–37
  • Maquat, L. E.. 1995. When cells stop making sense: effects of nonsense codons on RNA metabolism in vertebrate cells. RNA 1:453–465
  • Muhlrad, D., Decker, C., and Parker, R.. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′-3′ digestion of the transcript. Genes Dev. 8:855–866
  • Muhlrad, D., and Parker, R.. 1994. Premature translational termination triggers mRNA decapping. Nature 370:578–581
  • Muhlrad, D., and Parker, R.. 1999. Recognition of yeast mRNAs as “nonsense containing” leads to both inhibition of mRNA translation and mRNA degradation: implications for the control of mRNA decapping. Mol. Biol. Cell 10:3971–3978
  • Opekarova, M., and Kubin, J.. 1997. On the unidirectionality of arginine uptake in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 152:261–267
  • Page, M. F., Carr, B., Anders, K. R., Grimson, A., and Anderson, P.. 1999. SMG-2 is a phosphorylated protein required for mRNA surveillance in Caenorhabditis elegans and related to Upf1p of yeast. Mol. Cell. Biol. 19:5943–5951
  • Peltz, S. W., Brown, A. H., and Jacobson, A.. 1993. mRNA destabilization triggered by premature translational termination depends on at least three cis-acting sequence elements and one trans-acting factor. Genes Dev. 7:1737–1754
  • Peltz, S. W., Trotta, C., He, F., Brown, A., Donahue, J., Welch, E., and Jacobson, A.. 1993. Identification of the cis-acting sequences and trans-acting factors involved in nonsense-mediated mRNA decay Protein synthesis and targeting in yeast. Brown, A., Tuite, M., and McCarthy, J. 1–10 Springer-Verlag, Berlin, Germany
  • Peltz, S. W., He, F., Welch, E., and Jacobson, A.. 1994. Nonsense-mediated mRNA decay in yeast. Prog. Nucleic Acids Res. Mol. Biol. 47:271–298
  • Perlick, H. A., Medghalchi, S. M., Spencer, F. A., Kendzior, R. J.Jr., and Dietz, H. C.. 1996. Mammalian orthologues of a yeast regulator of nonsense-transcript stability. Proc. Natl. Acad. Sci. USA 93:10928–10932
  • Pulak, R., and Anderson, P.. 1993. mRNA surveillance by the Caenorhabditis elegans smg genes. Genes Dev. 7:1885–1897
  • Rose, M. D., Winston, F., and Heiter, P.. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Ruiz-Echevarria, M. J., Czaplinski, K., and Peltz, S. W.. 1996. Making sense of nonsense in yeast. Trends Biochem. Sci. 21:433–438
  • Ruiz-Echevarria, M. J., Yasenchak, J. M., Han, X., Dinman, J. D., and Peltz, S. W.. 1998. The Upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Proc. Natl. Acad. Sci. USA 95:8721–8726
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sanger, F., Nicklen, S., and Coulson, A. R.. 1989. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467
  • Soni, R., Carmichael, J. P., and Murray, J. A. H.. 1993. Parameters affecting lithium acetate-mediated transformation of Saccharomyces cerevisiae and development of a rapid and simple procedure. Curr. Genet. 24:455–459
  • Waldron, C., and Lacroute, F.. 1975. Effect of growth rate on the amounts of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122:855–865
  • Welch, E. M., and Jacobson, A.. 1999. An internal open reading frame triggers nonsense-mediated decay of the yeast SPT10 mRNA. EMBO J. 18:6134–6145
  • Weng, Y., Czaplinski, K., and Peltz, S. W.. 1996. Identification and characterization of mutations in the UPF1 gene that affect nonsense suppression and the formation of the Upf protein complex but not mRNA turnover. Mol. Cell. Biol. 16:5491–5506
  • Weng, Y., Czaplinski, K., and Peltz, S. W.. 1996. Genetic and biochemical characterization of mutations in the ATPase and helicase regions of the Upf1 protein. Mol. Cell. Biol. 16:5477–5490
  • Weng, Y., Czaplinski, K., and Peltz, S. W.. 1998. ATP is a cofactor of the Upf1p protein that modulates its translation termination and RNA binding activities. RNA 4:205–214
  • White, T. J., Arnheim, N., and Erlich, H. A.. 1989. The polymerase chain reaction. Trends Genet. 5:185–189
  • Yarus, M.. 1992. Proofreading, NTPases and translation: successful increase in specificity. Trends Biochem. Sci. 17:171–174
  • Zuk, D., and Jacobson, A.. 1998. A single amino acid substitution in yeast eIF-5A results in mRNA stabilization. EMBO J. 17:2914–2925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.