30
Views
128
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Specific Protein-Protein Interaction between Basic Helix-Loop-Helix Transcription Factors and Homeoproteins of the Pitx Family

, , , &
Pages 4826-4837 | Received 15 Dec 1999, Accepted 05 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Apelqvist, A., Sommer, L., Beatus, P., Anderson, D. J., Honjo, T., Hrabe de Angelis, M., Lendahl, U., and Edlund, H.. 1999. Notch signalling controls pancreatic cell differentiation. Nature 400:877–881
  • Aplan, P. D., Nakahara, K., Orkin, S. H., and Kirsch, I. R.. 1992. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J. 11:4073–4081
  • Blackwell, T. K., and Weintraub, H.. 1990. Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science 250:1104–1110
  • Campione, M., Steinbeisser, H., Schweickert, A., Deissler, K., van Bebber, F., Lowe, L. A., Nowotschin, S., Viebahn, C., Haffter, P., Kuehn, M. R., and Blum, M.. 1999. The homeobox gene Ptx2: mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 126:1225–1234
  • Chan, S. K., Jaffe, L., Capovilla, M., Botas, J., and Mann, R. S.. 1994. The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell 78:603–615
  • Chang, C. P., Brocchieri, L., Shen, W. F., Largman, C., and Cleary, M. L.. 1996. Pbx modulation of Hox homeodomain amino-terminal arms establishes different DNA-binding specificities across the Hox locus. Mol. Cell. Biol. 16:1734–1745
  • Chang, C. P., Shen, W. F., Rozenfeld, S., Lawrence, H. J., Largman, C., and Cleary, M. L.. 1995. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 9:663–674
  • Drouin, J., Lamolet, B., Lamonerie, T., Lanctôt, C., and Tremblay, J. J.. 1998. The Ptx family of homeodomain transcription factors during pituitary development. Mol. Cell. Endocrinol. 140:31–36
  • Drouin, J., Lanctôt, C., and Tremblay, J. J.. 1998. La famille Ptx des facteurs de transcription à homéodomaine. Medecine/Sciences 14:335–339
  • Duboule, D.. 1994. Guidebook to the homeobox genes. Sambrook & Tooze Publications, Oxford, U.K
  • Durocher, D., Charron, F., Warren, R., Schwartz, R. J., and Nemer, M.. 1997. The cardiac transcription factors Nkx2-5 and GATA-4 are mutual cofactors. EMBO J. 16:5687–5696
  • Ellenberger, T., Fass, D., Arnaud, M., and Harrison, S. C.. 1994. Crystal structure of transcription factor E47: E-box recognition by a basic region helix-loop-helix dimer. Genes Dev. 8:970–980
  • Fraenkel, E., and Pabo, C. O.. 1998. Comparison of X-ray and NMR structures for the Antennapedia homeodomain-DNA complex. Nat. Struct. Biol. 5:692–697
  • Gage, P. J., and Camper, S. A.. 1997. Pituitary homeobox 2, a novel member of the bicoid-related family of homeobox genes, is a potential regulator of anterior structure formation. Hum. Mol. Genet. 6:457–464
  • Gage, P. J., Suh, H., and Camper, S. A.. 1999. The bicoid-related Pitx gene family in development. Mamm. Genome 10:197–200
  • Gradwohl, G., Dierich, A., LeMeur, M., and Guillemot, F.. 2000. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. USA 97:1607–1611
  • Graham, A., and McGonnell, I.. 1999. Limb development: farewell to arms. Curr. Biol. 9:R368–R370
  • Guillemot, F., and Joyner, A. L.. 1993. Dynamic expression of the murine Achaete-Scute homologue Mash-1 in the developing nervous system. Mech. Dev. 42:171–185
  • Guillemot, F., Lo, L. C., Johnson, J. E., Auerbach, A., Anderson, D. J., and Joyner, A. L.. 1993. Mammalian achaete-scute homolog 1 is required for the early development of olfactory and autonomic neurons. Cell 75:463–476
  • Hanes, S. D., and Brent, R.. 1989. DNA specificity of the bicoid activator protein is determined by homeodomain recognition helix residue 9. Cell 57:1275–1283
  • Harvey, R. P.. 1998. Links in the left/right axial pathway. Cell 94:273–276
  • Hollenberg, S. M., Sternglanz, R., Cheng, P. F., and Weintraub, H.. 1995. Identification of a new family of tissue-specific basic helix-loop-helix proteins with a two-hybrid system. Mol. Cell. Biol. 15:3813–3822
  • Johnson, J. D., Zhang, W., Rudnick, A., Rutter, W. J., and German, M. S.. 1997. Transcriptional synergy between LIM-homeodomain proteins and basic helix-loop-helix proteins: the LIM2 domain determines specificity. Mol. Cell. Biol. 17:3488–3496
  • Knoepfler, P. S., Bergstrom, D. A., Uetsuki, T., Dac-Korytko, I., Sun, Y. H., Wright, W. E., Tapscott, S. J., and Kamps, M. P.. 1999. A conserved motif N-terminal to the DNA-binding domains of myogenic bHLH transcription factors mediates cooperative DNA binding with pbx-Meis1/Prep1. Nucleic Acids Res. 27:3752–3761
  • Krumlauf, R.. 1994. Hox genes in vertebrate development. Cell 78:191–201
  • Lamonerie, T., Tremblay, J. J., Lanctôt, C., Therrien, M., Gauthier, Y., and Drouin, J.. 1996. PTX1, a bicoid-related homeobox transcription factor involved in transcription of pro-opiomelanocortin (POMC) gene. Genes Dev. 10:1284–1295
  • Lanctôt, C., Lamolet, B., and Drouin, J.. 1997. The bicoid-related homeoprotein Ptx1 defines the most anterior domain of the embryo and differentiates posterior from anterior lateral mesoderm. Development 124:2807–2817
  • Lanctôt, C., Moreau, A., Chamberland, M., Tremblay, M. L., and Drouin, J.. 1999. Hindlimb patterning and mandible development require the Ptx1 gene. Development 126:1805–1810
  • Larson, R. C., Lavenir, I., Larson, T. A., Baer, R., Warren, A. J., Wadman, I., Nottage, K., and Rabbitts, T. H.. 1996. Protein dimerization between LMO2 (RBTN2) and TAL1 alters thymocyte development and potentiates T cell tumorigenesis in transgenic mice. EMBO J. 15:1021–1027
  • Lassar, A. B., Davis, R. L., Wright, W. E., Kadesch, T., Murre, C., Voronova, A., Baltimore, D., and Weintraub, H.. 1991. Functional activity of myogenic HLH proteins requires hetero-oligomerization with E12/E47-like proteins in vivo. Cell 66:305–315
  • Lee, J. E.. 1997. Basic helix-loop-helix genes in neural development. Curr. Neurobiol. 7:13–20
  • Lee, J. E., Hollenberg, S. M., Snider, L., Turner, D. L., Lipnick, N., and Weintraub, H.. 1995. Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-helix protein. Science 268:836–844
  • Logan, M., Pagán-Westphal, S. M., Smith, D. M., Paganessi, L., and Tabin, C. J.. 1998. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 94:307–317
  • Logan, M., and Tabin, C. J.. 1999. Role of Pitx1 upstream of Tbx4 in specification of hindlimb identity. Science 283:1736–1739
  • Lu, Q., and Kamps, M. P.. 1996. Structural determinants within Pbx1 that mediate cooperative DNA binding with pentapeptide-containing Hox proteins: proposal for a model of a Pbx1-Hox-DNA complex. Mol. Cell. Biol. 16:1632–1640
  • Ma, P. C., Rould, M. A., Weintraub, H., and Pabo, C. O.. 1994. Crystal structure of MyoD bHLH domain-DNA complex: perspectives on DNA recognition and implications for transcriptional activation. Cell 77:451–459
  • Ma, Q., Fode, C., Guillemot, F., and Anderson, D.. 1999. Neurogenin1 and neurogenin2 control two distinct waves of neurogenesis in developing dorsal root ganglia. Genes Dev. 13:1717–1728
  • Ma, Q. F., Kintner, C., and Anderson, D. J.. 1996. Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52
  • Miyata, T., Maeda, T., and Lee, J. E.. 1999. NeuroD is required for differentiation of the granule cells in the cerebellum and hippocampus. Genes Dev. 13:1647–1652
  • Molkentin, J. D., and Olson, E. N.. 1996. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93:9366–9373
  • Mucchielli, M. L., Martinez, S., Pattyn, A., Goridis, C., and Brunet, J. F.. 1996. Otlx2, an Otx-related homeobox gene expressed in the pituitary gland and in a restricted pattern in the forebrain. Mol. Cell. Neurosci. 8:258–271
  • Murre, C., McCaw, P. S., and Baltimore, D.. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD, and myc proteins. Cell 56:777–783
  • Mutoh, H., Fung, B. P., Naya, F. J., Tsai, M. J., Nishitani, J., and Leiter, A. B.. 1997. The basic helix-loop-helix transcription factor beta2/neurod is expressed in mammalian enteroendocrine cells and activates secretin gene expression. Proc. Natl. Acad. Sci. USA 94:3560–3564
  • Naya, F. J., Huang, H. P., Qiu, Y., Mutoh, H., DeMayo, F. J., Leiter, A. B., and Tsai, M. J.. 1997. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 11:2323–2334
  • Naya, F. J., Stellrecht, C. M. M., and Tsai, M. J.. 1995. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 9:1009–1019
  • Ohneda, K., Mirmira, R. G., Wang, J. H., Johnson, J. D., and German, M. S.. 2000. The homeodomain of PDX-1 mediates multiple protein-protein interactions in the formation of a transcriptional activation complex on the insulin promoter. Mol. Cell. Biol. 20:900–911
  • Olson, E. N., and Klein, W. H.. 1994. bHLH factors in muscle development: dead lines and commitments, what to leave in and what to leave out. Genes Dev. 8:1–8
  • Peers, B., Leonard, J., Sharma, S., Teitelman, G., and Montminy, M. R.. 1994. Insulin expression in pancreatic islet cells relies on cooperative interactions between the helix loop helix factor E47 and the homeobox factor STF-1. Mol. Endocrinol. 8:1798–1806
  • Peshavaria, M., Henderson, E., Sharma, A., Wright, C. V., and Stein, R.. 1997. Functional characterization of the transactivation properties of the PDX-1 homeodomain protein. Mol. Cell. Biol. 17:3987–3996
  • Phelan, M. L., Rambaldi, I., and Featherstone, M. S.. 1995. Cooperative interactions between HOX and PBX proteins mediated by a conserved peptide motif. Mol. Cell. Biol. 15:3989–3997
  • Piedra, M. E., Icardo, J. M., Albajar, M., Rodriguez-Rey, J. C., and Ros, M. A.. 1998. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 94:319–324
  • Poulin, G., Turgeon, B., and Drouin, J.. 1997. NeuroD1/BETA2 contributes to cell-specific transcription of the POMC gene. Mol. Cell. Biol. 17:6673–6682
  • Raphael, S. J., Apel, R. L., and Asa, S. L.. 1995. Brief report: detection of high-molecular-weight cytokeratins in neoplastic and non-neoplastic thyroid tumors using microwave antigen retrieval. Modern Pathol. 8:870–872
  • Rawls, A., and Olson, E. N.. 1997. MyoD meets its maker. Cell 89:5–8
  • Ryan, A. K., Blumberg, B., Rodriguez-Esteban, C., Yonei-Tamura, S., Tamura, I., Tsukui, T., de la Peña, J., Sabbagh, W., Greenwald, J., Choe, S., Norris, D. P., Robertson, E. J., Evans, R. M., Rosenfeld, M. G., and Izpisúa Belmonte, J. C.. 1998. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 394:545–551
  • Semina, E. V., Reiter, R., Leysens, N. J., Alward, W. L., Small, K. W., Datson, N. A., Siegel-Bartelt, J., Bierke-Nelson, D., Bitoun, P., Zabel, B. U., Carey, J. C., and Murray, J. C.. 1996. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat. Genet. 14:392–399
  • Shivdasani, R. A., Mayer, E. L., and Orkin, S. H.. 1995. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373:432–434
  • Sun, X.-H., and Baltimore, D.. 1991. An inhibitory domain of E12 transcription factor prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64:459–470
  • Szeto, D. P., Rodriguez-Esteban, C., Ryan, A. K., O'Connell, S., Liu, R., Kioussi, C., Gleiberman, A. S., Izpisua-Belmonte, J. C., and Rosenfeld, M. G.. 1999. Role of the bicoid-related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev. 13:484–494
  • Szeto, D. P., Ryan, A. K., O'Connell, S. M., and Rosenfeld, M. G.. 1996. P-OTX: a PIT-1-interacting homeodomain factor expressed during anterior pituitary gland development. Proc. Natl. Acad. Sci. USA 93:7706–7710
  • Therrien, M., and Drouin, J.. 1991. Pituitary pro-opiomelanocortin gene expression requires synergistic interactions of several regulatory elements. Mol. Cell. Biol. 11:3492–3503
  • Therrien, M., and Drouin, J.. 1993. Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. Mol. Cell. Biol. 13:2342–2353
  • Treisman, J., Gonczy, P., Vashishtha, M., Harris, E., and Desplan, C.. 1989. A single amino acid can determine the DNA binding specificity of homeodomain proteins. Cell 59:553–562
  • Tremblay, J. J., Lanctôt, C., and Drouin, J.. 1998. The pan-pituitary activator of transcription, Ptx-1 (pituitary homeobox1), acts in synergy with SF-1 and Pit1 and is an upstream regulator of the Lim-homeodomain gene Lim3/Lhx3. Mol.Endocrinol. 12:428–441
  • Tremblay, J. J., Marcil, A., Gauthier, Y., and Drouin, J.. 1999. Ptx1 regulates SF-1 activity by an interaction that mimics the role of the ligand-binding domain. EMBO J. 18:3431–3441
  • Wadman, I. A., Osada, H., Grutz, G. G., Agulnick, A. D., Westphal, H., Forster, A., and Rabbitts, T. H.. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16:3145–3157
  • Weatherbee, S. D., and Carroll, S. B.. 1999. Selector genes and limb identity in arthropods and vertebrates. Cell 97:283–286
  • Yoshioka, H., Meno, C., Koshiba, K., Sugihara, M., Itoh, H., Ishimaru, Y., Inoue, T., Ohuchi, H., Semina, E. V., Murray, J. C., Hamada, H., and Noji, S.. 1998. Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left-right asymmetry. Cell 94:299–305
  • Zhuang, Y., Soriano, P., and Weintraub, H.. 1994. The helix-loop-helix gene E2A is required for B cell formation. Cell 79:875–884

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.