19
Views
22
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Bypass of a Meiotic Checkpoint by Overproduction of Meiotic Chromosomal Proteins

, &
Pages 4838-4848 | Received 17 Dec 1999, Accepted 06 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Alani, E., Padmore, R., and Kleckner, N.. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436
  • Bailis, J. M., and Roeder, G. S.. 1998. Synaptonemal complex morphogenesis and sister-chromatid cohesion require Mek1-dependent phosphorylation of a meiotic chromosomal protein. Genes Dev. 22:3551–3563
  • Bailis, J. M., and Roeder, G. S.. 2000. Pachytene exit controlled by reversal of Mek1-dependent phosphorylation. Cell 101:211–221
  • Bishop, D., Park, D., Xu, L., and Kleckner, N.. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456
  • Bishop, D. K.. 1994. RecA homologs Dmc1 and Rad51 interact to form multiple nuclear complexes prior to meiotic chromosome synapsis. Cell 79:1081–1092
  • Boddy, M. N., Furnari, B., Mondesert, O., and Russell, P.. 1998. Replication checkpoint enforced by kinases Cds1 and Chk1. Science 280:909–912
  • Boeke, J. D., Lacroute, F., and Fink, G.. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346
  • Cao, L., Alani, E., and Kleckner, N.. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101
  • Chua, P. R., and Roeder, G. S.. 1998. Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93:349–359
  • Clarke, L., and Carbon, J.. 1983. Genomic substitutions of centromeres in Saccharomyces cerevisiae. Nature 305:23–28
  • de los Santos, T., and Hollingsworth, N. M.. 1999. Red1p, a MEK1-dependent phosphoprotein that physically interacts with Hop1p during meiosis in yeast. J. Biol. Chem. 274:1783–1790
  • Game, J. C., Sitney, K. C., Cook, V. E., and Mortimer, R. K.. 1989. Use of a ring chromosome and pulsed-field gels to study interhomolog recombination, double-strand DNA breaks and sister-chromatid exchange in yeast. Genetics 123:695–713
  • Gasior, S. L., Wong, A. K., Kora, Y., Shinohara, A., and Bishop, D. K.. 1998. Rad52 associates with RPA and functions with Rad55 and Rad57 to assemble meiotic recombination complexes. Genes Dev. 12:2208–2221
  • Gietz, R. D., and Sugino, A.. 1988. New yeast-Escherichia coli shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. Gene 74:527–534
  • Goldway, M., Sherman, A., Zenvirth, D., Arbel, T., and Simchen, G.. 1993. A short chromosomal region with major roles in yeast chromosome III meiotic disjunction, recombination and double-strand breaks. Genetics 133:159–169
  • Hartwell, L. H., and Weinert, T. A.. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634
  • Heatwole, V. M.. 1999. TUNEL assay for apoptotic cells. Methods Mol. Biol. 115:141–148
  • Hill, J. E., Myers, A. M., Koerner, T. J., and Tzagoloff, A.. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167
  • Hollingsworth, N. M., and Byers, B.. 1989. HOP1: a yeast meiotic pairing gene. Genetics 121:445–462
  • Hollingsworth, N. M., Goetsch, L., and Byers, B.. 1990. The HOP1 gene encodes a meiosis-specific component of yeast chromosomes. Cell 61:73–84
  • Hollingsworth, N. M., and Ponte, L.. 1997. Genetic interactions between HOP1, RED1 and MEK1 suggest that MEK1 regulates assembly of axial element components during meiosis in the yeast Saccharomyces cerevisiae. Genetics 147:33–42
  • Klapholz, S., and Esposito, R. E.. 1980. Recombination and chromosome segregation during the single division meiosis in SPO12-1 and SPO13-1 diploids. Genetics 96:589–611
  • Leu, J.-Y., Chua, P. R., and Roeder, G. S.. 1998. The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94:375–386
  • Leu, J.-Y., and Roeder, G. S.. 1999. The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated phosphorylation of the cyclin-dependent kinase Cdc28. Mol. Cell 4:805–814
  • Lindsay, H. D., Griffiths, D. J. F., Edwards, R. J., Christensen, P. U., Murray, J. M., Osman, F., Walworth, N., and Carr, A. M.. 1999. S-phase specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12:382–395
  • Lydall, D., Nikolsky, Y., Bishop, D. K., and Weinert, T.. 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383:840–843
  • Nag, D. K., Scherthan, H., Rockmill, B., Bhargava, J., and Roeder, G. S.. 1995. Heteroduplex DNA formation and homolog pairing in yeast meiotic mutants. Genetics 141:75–86
  • Navas, T. A., Zhou, Z., and Elledge, S. J.. 1995. DNA polymerase epsilon links the DNA replication machinery to the S phase checkpoint. Cell 80:29–39
  • Nelms, B. E., Maser, R. S., MacKay, J. F., Lagally, M. G., and Petrini, J. H.. 1998. In situ visualization of DNA double-strand break repair in human fibroblasts. Science 280:590–592
  • Rockmill, B., and Roeder, G. S.. 1988. RED1: a yeast gene required for the segregation of chromosomes during the reductional division of meiosis. Proc. Natl. Acad. Sci. USA 85:6057–6061
  • Rockmill, B., and Roeder, G. S.. 1990. Meiosis in asynaptic yeast. Genetics 126:563–574
  • Rockmill, B., and Roeder, G. S.. 1991. A meiosis-specific protein kinase homolog required for chromosome synapsis and recombination. Genes Dev. 5:2392–2404
  • Rockmill, B., Lambie, E., and Roeder, G. S.. 1991. Spore enrichment. Methods Enzymol. 194:146–149
  • Rockmill, B., Engebrecht, J., Scherthan, H., Loidl, J., and Roeder, G. S.. 1995. The yeast MER2 gene is required for chromosome synapsis and the initiation of meiotic recombination. Genetics 141:49–59
  • Rockmill, B., Sym, M., Scherthan, H., and Roeder, G. S.. 1995. Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev. 9:2684–2695
  • Rockmill, B., and Roeder, G. S.. 1998. Telomere-mediated chromosome pairing during meiosis in budding yeast. Genes Dev. 12:2574–2586
  • Roeder, G. S.. 1997. Meiotic chromosomes: it takes two to tango. Genes Dev. 11:2600–2621
  • Rose, D., and Holm, C.. 1993. Meiosis-specific arrest revealed in DNA topoisomerase II mutants. Mol. Cell. Biol. 13:3445–3455
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Sandell, L. L., and Zakian, V. A.. 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729–739
  • San-Segundo, P. A., and Roeder, G. S.. 1999. Pch2 links chromatin silencing to meiotic checkpoint control. Cell 97:313–324
  • Schultes, N. P., Ellington, A. D., Cherry, J. M., and Szostak, J. W.. 1990. Saccharomyces cerevisiae homoserine kinase is homologous to prokaryotic homoserine kinases. Gene 96:177–180
  • Schwacha, A., and Kleckner, N.. 1994. Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76:51–63
  • Schwacha, A., and Kleckner, N.. 1997. Interhomolog bias during meiotic recombination: meiotic functions promote a highly differentiated interhomolog-only pathway. Cell 90:1123–1136
  • Sherman, F., Fink, G. R., and Hicks, J. B.. 1986. Methods in yeast genetics: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Smith, A. V., and Roeder, G. S.. 1997. The yeast Red1 protein localizes to the cores of meiotic chromosomes. J. Cell Biol. 136:957–967
  • Smith, A. V., and Roeder G. S.. Cloning and characterization of the Kluyveromyces lactis homologs of the Saccharomyces cerevisiae RED1 and HOP1 genes. Chromosoma, in press.
  • Southern, E. M.. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517
  • Storlazzi, A., Xu, L., Schwacha, A., and Kleckner, N.. 1996. Synaptonemal complex (SC) component Zip1 plays a role in meiotic recombination independent of SC polymerization along the chromosomes. Proc. Natl. Acad. Sci. USA 93:9043–9048
  • Sun, H., Treco, D., Schultes, N. P., and Szostak, J. W.. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90
  • Sym, M., Engebrecht, J., and Roeder, G. S.. 1993. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72:365–378
  • Sym, M., and Roeder, G. S.. 1994. Crossover interference is abolished in the absence of a synaptonemal complex protein. Cell 79:283–292
  • Sym, M., and Roeder, G. S.. 1995. Zip1-induced changes in synaptonemal complex structure and polycomplex assembly. J. Cell Biol. 128:455–466
  • Tishkoff, D. X., Rockmill, B., Roeder, G. S., and Kolodner, R. D.. 1995. The sep1 mutant of Saccharomyces cerevisiae arrests in pachytene and is deficient in meiotic recombination. Genetics 139:495–509
  • Tung, K.-S., and Roeder, G. S.. 1998. Meiotic chromosome morphology and behavior in zip1 mutants of Saccharomyces cerevisiae. Genetics 149:817–832
  • Usui, T., Ohta, T., Oshiumi, J., Tomizawa, J., Ogawa, H., and Ogawa, T.. 1998. Complex formation and functional versatility of Mre11 of budding yeast in recombination. Cell 95:705–716
  • Weiner, B. M., and Kleckner, N.. 1994. Chromosome pairing via multiple interstitial interactions before and during meiosis in yeast. Cell 77:977–991
  • Xu, L., Ajimura, M., Padmore, R., Klein, C., and Kleckner, N.. 1995. NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:6572–6581
  • Xu, L., Weiner, B. M., and Kleckner, N.. 1997. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11:106–118
  • Zeng, Y., Forbes, K. C., Wu, Z., Moreno, S., Piwnica-Worms, H., and Enoch, T.. 1998. Replication checkpoint requires phosphorylation of the phosphatase Cdc25 by Cds1 or Chk1. Nature 395:507–510

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.