49
Views
226
CrossRef citations to date
0
Altmetric
Nucleocytoplasmic Communication

Nuclear Entry of the Circadian Regulator mPER1 Is Controlled by Mammalian Casein Kinase I ɛ

, , , &
Pages 4888-4899 | Received 15 Dec 1999, Accepted 29 Mar 2000, Published online: 28 Mar 2023

REFERENCES

  • Albrecht, U., Sun, Z. S., Eichele, G., and Lee, C. C.. 1997. A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064
  • Balsalobre, A., Damiola, F., and Schibler, U.. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937
  • Briggs, L. J., Stein, D., Goltz, J., Corrigan, V. C., Efthymiadis, A., Hubner, S., and Jans, D. A.. 1998. The cAMP-dependent protein kinase site (Ser312) enhances dorsal nuclear import through facilitating nuclear localization sequence/importin interaction. J. Biol. Chem. 273:22745–22752
  • Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J., and Greenberg, M. E.. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868
  • Cegielska, A., Gietzen, K. F., Rivers, A., and Virshup, D. M.. 1998. Autoinhibition of casein kinase I ɛ (CKIɛ) is relieved by protein phosphatases and limited proteolysis. J. Biol. Chem. 273: 1357
  • Comolli, J., Taylor, W., Rehman, J., and Hastings, J. W.. 1996. Inhibitors of serine/threonine phosphoprotein phosphatases alter circadian properties in Gonyaulax polyedra. Plant Physiol. 111:285–291
  • Comolli, J. C., and Hastings, J. W.. 1999. Novel effects on the Gonyaulax circadian system produced by the protein kinase inhibitor staurosporine. J. Biol. Rhythms 14:11–19
  • Curtin, K. D., Huang, Z. J., and Rosbash, M.. 1995. Temporally regulated nuclear entry of the Drosophila period protein contributes to the circadian clock. Neuron 14:365–372
  • Dalal, S. N., Schweitzer, C. M., Gan, J., and DeCaprio, J. A.. 1999. Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol. Cell. Biol. 19:4465–4479
  • Darlington, T. K., Wager-Smith, K., Ceriani, M. F., Staknis, D., Gekakis, N., Steeves, T. D. L., Weitz, C. J., Takahashi, J. S., and Kay, S. A.. 1998. Closing the circadian loop: CLOCK-induced transcription of its own inhibitors per and tim. Science 280:1599–1603
  • Dhillon, N., and Hoekstra, M. F.. 1994. Characterization of two protein kinases from Schizosaccharomyces pombe involved in the regulation of DNA repair. EMBO J. 13:2777–2788
  • Dunlap, J. C.. 1999. Molecular bases for circadian clocks. Cell 96:271–290
  • Edery, I., Zwiebel, L. J., Dembinska, M. E., and Rosbash, M.. 1994. Temporal phosphorylation of the Drosophila period protein. Proc. Natl. Acad. Sci. USA 91:2260–2264
  • Fish, K., Cegielska, A., Getman, M., Landes, G., and Virshup, D. M.. 1995. Isolation and characterization of human casein kinase I epsilon, a novel member of the casein kinase I gene family. J. Biol. Chem. 270:14875–14883
  • Gao, Z.-H., Metherall, J., and Virshup, D. M.. 2000. Identification of casein kinase I substrates by in vitro expression cloning screening. Biochem. Biophys. Res. Commun. 268:562–566
  • Gietzen, K. F., and Virshup, D. M.. 1999. Identification of inhibitory autophosphorylation sites on casein kinase I ɛ. J. Biol. Chem. 274:32063–32070
  • Graves, P. R., and Roach, P. J.. 1995. Role of COOH-terminal phosphorylation in the regulation of casein kinase I delta. J. Biol. Chem. 270:21689–21694
  • Gross, S. D., and Anderson, R. A.. 1998. Casein kinase I: spatial organization and positioning of a multifunctional protein kinase family. Cell. Signalling 10:699–711
  • Hastings, M. H., Field, M. D., Maywood, E. S., Weaver, D. R., and Reppert, S. M.. 1999. Differential regulation of mPER1 and mTIM proteins in the mouse suprachiasmatic nuclei: new insights into a core clock mechanism. J. Neurosci. 19: RC11
  • Ho, U., Mason, S., Kobayashi, R., Hoekstra, M., and Andrews, B.. 1997. Role of the casein kinase I isoform, Hrr25, and the cell cycle-regulatory transcription factor, SBF, in the transcriptional response to DNA damage in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 94:581–586
  • Hoekstra, M. F., Liskay, R. M., Ou, A. C., DeMaggio, A. J., Burbee, D. G., and Heffron, F.. 1991. HRR25, a putative protein kinase from budding yeast: association with repair of damaged DNA. Science 253:1031–1034
  • Holland, P. M., and Cooper, J. A.. 1999. Docking sites for kinases. Curr. Biol. 9:R329–R331
  • Huang, Z. J., Edery, I., and Rosbash, M.. 1993. PAS is a dimerization domain common to Drosophila period and several transcription factors. Nature 364:259–262
  • Hübner, S., Xiao, C. Y., and Jans, D. A.. 1997. The protein kinase CK2 site (Ser111/112) enhances recognition of the simian virus 40 large T-antigen nuclear localization sequence by importin. J. Biol. Chem. 272:17191–17195
  • Jin, X., Shearman, L. P., Weaver, D. R., Zylka, M. J., Vries, G. J. D., and Reppert, S. M.. 1999. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68
  • Kaffman, A., Rank, N. M., and O'Shea, E. K.. 1998. Phosphorylation regulates association of the transcription factor Pho4 with its import receptor Pse1/Kap121. Genes Dev. 12:2673–2683
  • Kloss, B., Price, J. L., Saez, L., Blau, J., Rothenfluh, A., Wesley, C. S., and Young, M. W.. 1998. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase I epsilon. Cell 94:97–107
  • Knippschild, U., Milne, D. M., Campbell, L. E., DeMaggio, A. J., Christenson, E., Hoekstra, M. F., and Meek, D. W.. 1997. p53 is phosphorylated in vitro and in vivo by the delta and epsilon isoforms of casein kinase 1 and enhances the level of casein kinase 1 delta in response to topoisomerase-directed drugs. Oncogene 15:1727–1736
  • Komeili, A., and O'Shea, E. K.. 1999. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 284:977–980
  • Kudo, N., Wolff, B., Sekimoto, T., Schreiner, E. P., Yoneda, Y., Yanagida, M., Horinouchi, S., and Yoshida, M.. 1998. Leptomycin B inhibition of signal-mediated nuclear export by direct binding to CRM1. Exp. Cell Res. 242:540–547
  • Kume, K., Zylka, M. J., Sriram, S., Shearman, L. P., Weaver, D. R., Jin, X., Maywood, E. S., Hastings, M. H., and Reppert, S. M.. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205
  • Lee, C., Bae, K., and Edery, I.. 1998. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex. Neuron 21:857–867
  • Li, X., Shou, W., Kloc, M., Reddy, B. A., and Etkin, L. D.. 1994. Cytoplasmic retention of Xenopus nuclear factor 7 before the mid blastula transition uses a unique anchoring mechanism involving a retention domain and several phosphorylation sites. J. Cell Biol. 124:7–17
  • Liu, Y., Loros, J., and Dunlap, J. C.. 2000. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc. Natl. Acad. Sci. USA 97:234–239
  • Lopez-Girona, A., Furnari, B., Mondesert, O., and Russell, P.. 1999. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397:172–175
  • Matsumoto, A., Tomioka, K., Chiba, Y., and Tanimura, T.. 1999. timrit lengthens circadian period in a temperature-dependent manner through suppression of PERIOD protein cycling and nuclear localization. Mol. Cell. Biol. 19:4343–4354
  • McCright, B., and Virshup, D. M.. 1995. Identification of a new family of protein phosphatase 2A regulatory subunits. J. Biol. Chem. 270:26123–26128
  • Pawson, T., and Scott, J. D.. 1997. Signaling through scaffold, anchoring, and adaptor proteins. Science 278:2075–2080
  • Peng, C. Y., Graves, P. R., Thoma, R. S., Wu, Z., Shaw, A. S., and Piwnica-Worms, H.. 1997. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science 277:1501–1505
  • Peters, J. M., McKay, R. M., McKay, J. P., and Graff, J. M.. 1999. Casein kinase I transduces Wnt signals. Nature 401:345–350
  • Price, J. L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., and Young, M. W.. 1998. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94:83–95
  • Reppert, S. M.. 1998. A clockwork explosion! Neuron 21:1–4
  • Rihs, H.-P., and Peters, R.. 1989. Nuclear transport kinetics depend on phosphorylation-site-containing sequences flanking the karyophilic signal of the Simian virus 40 T antigen. EMBO J. 8:1479–1484
  • Rivers, A., Gietzen, K. F., Vielhaber, E., and Virshup, D. M.. 1998. Regulation of casein kinase 1 ɛ and δ by an in vivo futile phosphorylation cycle. J. Biol. Chem. 273:15980–15984
  • Rowles, J., Slaughter, C., Moomaw, C., Hsu, J., and Cobb, M. H.. 1991. Purification of casein kinase I and isolation of cDNAs encoding multiple casein kinase I-like enzymes. Proc. Natl. Acad. Sci. USA 88:9548–9552
  • Saez, L., and Young, M. W.. 1996. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17:911–920
  • Sakamoto, K., Nagase, T., Fukui, H., Horikawa, K., Okada, T., Tanaka, H., Sato, K., Miyake, Y., Ohara, O., Kako, K., and Ishida, N.. 1998. Multitissue circadian expression of rat period homolog (rPer2) mRNA is governed by the mammalian circadian clock, the suprachiasmatic nucleus in the brain. J. Biol. Chem. 273:27039–27042
  • Sangoram, A. M., Saez, L., Antoch, M. P., Gekakis, N., Staknis, D., Whiteley, A., Fruechte, E. M., Vitaterna, M. H., Shimomura, K., King, D. P., Young, M. W., Weitz, C. J., and Takahashi, J. S.. 1998. Mammalian circadian autoregulatory loop: a timeless ortholog and mPer1 interact and negatively regulate CLOCK-BMAL1-induced transcription. Neuron 21:1101–1113
  • Santos, J., Logarinho, E., Tapia, C., Allende, C., Allende, J., and Sunkel, C.. 1996. The casein kinase 1 alpha gene of Drosophila melanogaster is developmentally regulated and the kinase activity of the protein induced by DNA damage. J. Cell Sci. 109:1847–1856
  • Sauman, I., and Reppert, S. M.. 1996. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of Period protein regulation. Neuron 17:889–900
  • Shou, W., Li, X., Wu, C., Cao, T., Kuang, J., Che, S., and Etkin, L. D.. 1996. Finely tuned regulation of cytoplasmic retention of Xenopus nuclear factor 7 by phosphorylation of individual threonine residues. Mol. Cell. Biol. 16:990–997
  • Sidorova, J. M., Mikesell, G. E., and Breeden, L. L.. 1995. Cell cycle-regulated phosphorylation of Swi6 controls its nuclear localization. Mol. Biol. Cell 6:1641–1658
  • Takumi, T., Matsubara, C., Shigeyoshi, Y., Taguchi, K., Yagita, K., Maebayashi, Y., Sakakida, Y., Okumura, K., Takashima, N., and Okamura, H.. 1998. A new mammalian period gene predominantly expressed in the suprachiasmatic nucleus. Genes Cells 3:167–176
  • Takumi, T., Nagamine, Y., Miyake, S., Matsubara, C., Taguchi, K., Takekida, S., Sakakida, Y., Nishikawa, K., Kishimoto, T., Niwa, S. I., Okumura, K., and Okamura, H.. 1999. A mammalian ortholog of Drosophila timeless, highly expressed in SCN and retina, forms a complex with mPER1. Genes Cells 4:67–75
  • Tei, H., Okamura, H., Shigeyoshi, Y., Fukuhara, C., Ozawa, R., Hirose, M., and Sakaki, Y.. 1997. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 389:512–516
  • Vosshall, L. B., Price, J. L., Sehgal, A., Saez, L., and Young, M. W.. 1994. Block in nuclear localization of period protein by a second clock mutation, timeless. Science 263:1606–1609
  • Young, M. W.. 1998. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. 67:135–152
  • Zhao, S., and Sancar, A.. 1997. Human blue-light photoreceptor hCRY2 specifically interacts with protein serine/threonine phosphatase 5 and modulates its activity. Photochem. Photobiol. 66:727–731
  • Zheng, B., Larkin, D. W., Albrecht, U., Sun, Z. S., Sage, M., Eichele, G., Lee, C. C., and Bradley, A.. 1999. The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400:169–173
  • Zhu, J., Shibasaki, F., Price, R., Guillemot, J. C., Yano, T., Dotsch, V., Wagner, G., Ferrara, P., and McKeon, F.. 1998. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 93:851–861
  • Zylka, M. J., Shearman, L. P., Levine, J. D., Jin, X., Weaver, D. R., and Reppert, S. M.. 1998. Molecular analysis of mammalian Timeless. Neuron 21:1115–1122
  • Zylka, M. J., Shearman, L. P., Weaver, D. R., and Reppert, S. M.. 1998. Three period homologs in mammals: differential light responses in the suprachiasmatic circadian clock and oscillating transcripts outside of brain. Neuron 20:1103–1110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.