17
Views
65
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

In Vitro Properties of the Conserved Mammalian Protein hnRNP D Suggest a Role in Telomere Maintenance

&
Pages 5425-5432 | Received 20 Dec 1999, Accepted 05 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Bianchi, A., Smith, S., Chong, L., Elias, P., and de Lange, T.. 1997. TRF1 is a dimer and bends telomeric DNA. EMBO J. 16:1785–1794
  • Birney, E., Kumar, S., and Krainer, A. R.. 1993. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 21:5803–5816
  • Bryan, T. M., and Cech, T. R.. 1999. Telomerase and the maintenance of chromosome ends. Curr. Opin. Cell Biol. 11:318–324
  • Burd, C. G., and Dreyfuss, G.. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621
  • Chong, L., van Steensel, B., Broccoli, D., Erdjument-Bromage, H., Hanish, J., Tempst, P., and de Lange, T.. 1995. A human telomeric protein. Science 270:1663–1667
  • Dempsey, L. A.. 1999. G4 DNA binding by LR1 and its subunits, nucleolin and hnRNP D: a role for G-G pairing in immunoglobin switch recombination. J. Biol. Chem. 274:1066–1071
  • Dempsey, L. A., Li, M.-J., DePace, A., Bray-Ward, P., and Maizels, N.. 1998. The human HNRPD locus maps to 4q21 and encodes a highly conserved protein. Genomics 49:378–384
  • Ding, J., Hayashi, M. K., Zhang, Y., Manche, L., Krainer, A. R., and Xu, R. M.. 1999. Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev. 13:1102–1115
  • Dreyfuss, G., Matunis, M. J., Piñol-Roma, S., and Burd, C. G.. 1993. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62:289–321
  • Evans, S. K., and Lundblad, V.. 1999. Est1 and cdc13 as comediators of telomerase access. Science 286:117–120
  • Fan, X. C., and Steitz, J. A.. 1998. Overexpression of HuR, a nuclear-cytoplasmic shuttling protein, increases the in vivo stability of ARE-containing mRNAs. EMBO J. 17:3448–3460
  • Fletcher, T. M., Sun, D., Salazar, M., and Hurley, L. H.. 1998. Effect of DNA secondary structure on human telomerase activity. Biochemistry 37:5536–5541
  • Gallouzi, I.-E., Brennan, C. M., Steinberg, M. G., Swanson, M. S., Eversole, A., Maizels, N., and Steitz, J. A.. 2000. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc. Natl. Acad. Sci. USA 97:3073–3078
  • Garvik, B., Carson, M., and Hartwell, L.. 1995. Single-stranded DNA arising at telomeres in cdc13 mutants may constitute a specific signal for the RAD9 checkpoint. Mol. Cell. Biol. 15:6128–6138
  • Gotta, M., and Cockell, M.. 1997. Telomeres, not the end of the story. Bioessays 19:367–370
  • Greider, C. W.. 1998. Telomerase activity, cell proliferation, and cancer. Proc. Natl. Acad. Sci. USA 95:90–92
  • Greider, C. W.. 1998. Telomeres and senescence: the history, the experiment, the future. Curr. Biol. 8:R178–R181
  • Griffith, J. D., Comeau, L., Rosenfield, S., Stansel, R. M., Bianchi, A., Moss, H., and de Lange, T.. 1999. Mammalian telomeres end in a large duplex loop. Cell 97:503–514
  • Hanamura, A., Caceres, J. F., Mayeda, A., Franza, B. R.Jr., and Krainer, A. R.. 1998. Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4:430–444
  • Harley, C. B.. 1991. Telomere loss: mitotic clock or genetic time bomb? Mutat. Res. 256:271–282
  • Henderson, E. R.. 1995. Telomere DNA structure. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Huang, M., Rech, J. E., Northington, S. J., Flicker, P. F., Mayeda, A., Krainer, A. R., and LeStourgeon, W. M.. 1994. The C-protein tetramer binds 230 to 240 nucleotides of pre-mRNA and nucleates the assembly of 40S heterogeneous nuclear ribonucleoprotein particles. Mol. Cell. Biol. 14:518–533
  • Ishikawa, F., Matunis, M. J., Dreyfuss, G., and Cech, T. R.. 1993. Nuclear proteins that bind the pre-mRNA 3′ splice site sequence r(UUAG/G) and the human telomeric DNA sequence d(TTAGGG)n. Mol. Cell. Biol. 13:4301–4310
  • Kajita, Y., Nakayama, J., Aizawa, M., and Ishikawa, F.. 1995. The UUAG-specific RNA binding protein, heterogeneous nuclear ribonucleoprotein D0. J. Biol. Chem. 270:22167–22175
  • Konig, P., and Rhodes, D.. 1997. Recognition of telomeric DNA. Trends Biochem. Sci. 22:43–47
  • Krecic, A. M., and Swanson, M. S.. 1999. hnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 11:363–371
  • LaBranche, H., Dupuis, S., Ben-David, Y., Bani, M.-R., Wellinger, R. J., and Chabot, B.. 1998. Telomere elongation by hnRNP A1 and a derivative that interacts with telomeric repeats and telomerase. Nat. Genet. 19:1–4
  • Lacroix, L., Lienard, H., Labourier, E., Djavaheri-Mergny, M., Lacoste, J., Leffers, H., Tazi, J., Helene, C., and Mergny, J.-L.. 2000. Identification of two human nuclear proteins that recognise the cytosine-rich strand of human telomeres in vitro. Nucleic Acids Res. 28:1564–1575
  • Laporte, L., Thomas, G. J.Jr.. 1998. A hairpin conformation for the 3′ overhang of Oxytricha nova telomeric DNA. J. Mol. Biol. 281:261–270
  • Laroia, G., Cuesta, R., Brewer, G., and Schneider, R. J.. 1999. Control of mRNA decay by heat shock-ubiquitin-proteosome pathway. Science 284:499–502
  • Levine, T. D., Gao, F., King, P. H., Andrews, L. G., and Keene, J. D.. 1993. Hel-N1: an autoimmune RNA-binding protein with specificity for 3′ uridylate-rich untranslated regions of growth factor mRNAs. Mol. Cell. Biol. 13:3494–3504
  • Lin, J. J., and Zakian, V. A.. 1995. An in vitro assay for Saccharomyces telomerase requires EST1. Cell 81:1127–1135
  • Lin, J. J., and Zakian, V. A.. 1996. The Saccharomyces CDC13 protein is a single-strand TG1–3 telomeric DNA-binding protein in vitro that affects telomere behavior in vivo. Proc. Natl. Acad. Sci. USA 93:13760–13765
  • Lingner, J., Cech, T. R., Hughes, T. R., and Lundblad, V.. 1997. Three Ever Shorter Telomere (EST) genes are dispensable for in vitro yeast telomerase activity. Proc. Natl. Acad. Sci. USA 14:11190–11195
  • Loflin, P., Chyi-Ying, C., and Shyu, A.-B.. 1999. Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev. 13:1884–1897
  • Luderus, M. E. E., van Steensel, B., Chong, L., Sibon, O. C. M., Cremers, F. F. M., and de Lange, T.. 1996. Structure, subnuclear distribution, and nuclear matrix association of the mammalian telomeric complex. J. Cell Biol. 135:867–881
  • Lundblad, V., and Szostak, J. W.. 1989. A mutant with a defect in telomere elongation leads to senescence in yeast. Cell 57:633–643
  • Makarov, V. L., Hirose, Y., and Langmore, J. P.. 1997. Long G tails at both ends of human chromosomes suggest a C strand degradation mechanism for telomere shortening. Cell 88:657–666
  • Marcand, S., Gilson, E., and Shore, D.. 1997. A protein-counting mechanism for telomere length regulation in yeast. Science 275:986–990
  • Marsich, E., Piccini, A., Xodo, L. E., and Manzini, G.. 1996. Evidence for a HeLa nuclear protein that binds specifically to the single-stranded d(CCCTAA)n telomeric motif. Nucleic Acids Res. 24:4029–4033
  • Marsich, E., Xodo, L. E., and Manzini, G.. 1998. Widespread presence in mammals and high binding specificity of a nuclear protein that recognises the single-stranded telomeric motif (CCCTAA)n. Eur. J. Biochem. 258:93–99
  • Mayeda, A., and Krainer, A. R.. 1992. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68:365–375
  • McAfee, J. G., Huang, M., Soltaninassab, S., Rech, J. E., Iyengar, S., and LeStourgeon, W. M.. 1997. The packaging of pre-mRNA Eukaryotic mRNA processing. Krainer, A. R. 68–102 IRL Press, Oxford, United Kingdom
  • McElligott, R., and Wellinger, R. J.. 1997. The terminal DNA structure of mammalian chromosomes. EMBO J. 16:3705–3714
  • Myer, V. E., Fan, X. C., and Steitz, J. A.. 1997. Identification of HuR as a protein implicated in AUUUA-mediated RNA decay. EMBO J. 16:2130–2139
  • Nugent, C. I., Hughes, T. R., Lue, N. F., and Lundblad, V.. 1996. Cdc13p: a single-strand telomeric DNA-binding protein with a dual role in yeast telomere maintenance. Science 274:249–252
  • Nugent, C. I., and Lundblad, V.. 1998. The telomerase reverse transcriptase: components and regulation. Genes Dev. 12:1073–1085
  • Piñol-Roma, S., Choi, Y. D., Matunis, M. J., and Dreyfuss, G.. 1988. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2:215–227
  • Piñol-Roma, S., and Dreyfuss, G.. 1992. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355:730–732
  • Sen, D., and Gilbert, W.. 1988. Formation of parallel four-stranded complexes by guanine rich motifs in DNA and its implications for meiosis. Nature 334:364–366
  • Sen, D., and Gilbert, W.. 1992. Novel DNA superstructures formed by telomere-like oligomers. Biochemistry 31:65–70
  • Shore, D.. 1994. RAP1: a protean regulator in yeast. Trends Genet. 10:408–412
  • Shore, D.. 1997. Telomere length regulation: getting the measure of chromosome ends. J. Biol. Chem. 378:591–597
  • Smith, S., and de Lange, T.. 1997. TRF1, a mammalian telomeric protein. Trends Genet. 13:21–26
  • Steiner, B. R., Hidaka, K., and Futcher, B.. 1996. Association of the Est1 protein with telomerase activity in yeast. Proc. Natl. Acad. Sci. USA 93:2817–2821
  • Sundquist, W. L., and Klug, A.. 1989. Telomeric DNA dimerizes by formation of guanine tetrads between hairpin loops. Nature 342:825–829
  • Swanson, M. S., and Dreyfuss, G.. 1988. RNA binding specificity of hnRNP proteins: a subset bind to the 3′ end of introns. EMBO J. 7:3519–3529
  • van Steensel, B., Smogorzewska, A., and De Lange, T.. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413
  • Virta-Pearlman, V., Morris, D. K., and Lundblad, V.. 1996. Est1 has the properties of a single-stranded telomere end-binding protein. Genes Dev. 10:3094–3104
  • Weighardt, F., Biamonti, G., and Riva, S.. 1996. The roles of heterogeneous nuclear ribonucleoproteins (hnRNP) in RNA metabolism. Bioessays 18:747–756
  • Weilbaecher, R. G., and Lundblad, V.. 1999. Assembly and regulation of telomerase. Curr. Opin. Chem. Biol. 3:573–577
  • Williamson, J. R.. 1994. G-quartet structures in telomeric DNA. Annu. Rev. Biophys. Biomol. Struct. 23:703–730
  • Williamson, J. R., Raghuraman, M. K., and Cech, T. R.. 1989. Monovalent cation-induced structure of telomeric DNA: the G-quartet model. Cell 59:871–880
  • Wright, W. E., Tesmer, V. M., Huffman, K. E., Levene, S. D., and Shay, J. W.. 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11:2801–2809
  • Zahler, A. M., Williamson, J. R., Cech, T. R., and Prescott, D. M.. 1991. Inhibition of telomerase by G-quartet DNA structures. Nature 350:718–720
  • Zhang, W., Wagner, B. J., Ehrenman, K., Schaefer, A. W., DeMaria, C. T., Crater, D., DeHaven, K., Long, L., and Brewer, G.. 1993. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13:7652–7665
  • Zhong, Z., Shiue, L., Kaplan, S., and de Lange, T.. 1992. A mammalian factor that binds telomeric TTAGGG repeats in vitro. Mol. Cell. Biol. 13:4834–4843
  • Zhou, J., Hidaka, K., and Futcher, B.. 2000. The Est1 subunit of yeast telomerase binds the Tlc1 telomerase RNA. Mol. Cell. Biol. 20:1947–1955

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.