82
Views
465
CrossRef citations to date
0
Altmetric
Cell Growth and Development

BNIP3 and Genetic Control of Necrosis-Like Cell Death through the Mitochondrial Permeability Transition Pore

, , , , , , & show all
Pages 5454-5468 | Received 07 Jan 2000, Accepted 03 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Bernardi, P., Scorrano, L., Colonna, R., Petronilli, V., and Di Lisa, F.. 1999. Mitochondria and cell death: mechanistic aspects and methodological issues. Eur. J. Biochem. 264:687–701
  • Bossy-Wetzel, E., Newmeyer, D. D., and Green, D. R.. 1998. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17:37–49
  • Boyd, J. M., Malstrom, S., Subramanian, T., Venkatesh, L. K., Schaeper, U., Elangovan, B., D'Sa-Eipper, C., and Chinnadurai, G.. 1994. Adenovirus E1B 19 kDa and Bcl-2 proteins interact with a common set of cellular proteins. Cell 79:341–351
  • Chautan, M., Chazal, G., Cecconi, F., Gruss, P., and Golstein, P.. 1999. Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr. Biol. 9:967–970
  • Chen, G., Cizeau, J., Vande Velde, C., Park, J. H., Bozek, G., Bolton, J., Shi, L., Dubik, D., and Greenberg, A.. 1999. Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J. Biol. Chem. 274:7–10
  • Chen, G., Ray, R., Dubik, D., Shi, L. F., Cizeau, J., Bleackley, R. C., Saxena, S., Gietz, R. D., and Greenberg, A. H.. 1997. The E1B 19K Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J. Exp. Med. 186:1975–1983
  • Chi, S., Kitanaka, C., Noguchi, K., Mochizuki, T., Nagashima, Y., Shirouzu, M., Fujita, H., Yoshida, M., Chen, W., Asai, A., Himeno, M., Yokoyama, S., and Kuchino, Y.. 1999. Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells. Oncogene 18:2281–2290
  • Crompton, M.. 1999. The mitochondrial permeability transition pore and its role in cell death. Biochem. J. 341:233–249
  • Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H. A., Gotoh, Y., and Greenberg, M. E.. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241
  • Deas, O., Dumont, C., MacFarlane, M., Rouleau, C., Hebib, F., Harper, F., Hirsch, F., Charpentier, G. M., Cohen, G. M., and Senik, A.. 1998. Caspase-independent cell death induced by anti-CD2 or staurosporine in activated human peripheral T lymphocytes. J. Immunol. 161:3375–3383
  • Earnshaw, W. C., Martins, L. M., and Kaufmann, S. H.. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68:383–424
  • Finucane, D. M., Bossy-Wetzel, E., Waterhouse, N. J., Cotter, T. G., and Green, D. R.. 1999. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J. Biol. Chem. 274:2225–2233
  • Goping, I. S., Gross, A., Lavoie, J. N., Nguyen, M., Jemmerson, R., Roth, K., Korsmeyer, S. J., and Shore, G. C.. 1998. Regulated targeting of BAX to mitochondria. J. Cell. Biol. 143:207–215
  • Green, D. R., and Reed, J. C.. 1998. Mitochondria and apoptosis. Science 281:1309–1312
  • Griffiths, G. J., Dubrez, L., Morgan, C. P., Jones, N. A., Whitehouse, J., Corfe, B. M., Dive, C., and Hickman, J. A.. 1999. Cell damage-induced conformational changes of the pro-apoptotic protein bak in vivo precede the onset of apoptosis. J. Cell Biol. 144:903–914
  • Gross, A., McDonnell, J. M., and Korsmeyer, S. J.. 1999. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13:1899–1911
  • Hakem, R., Hakem, A., Duncan, G. S., Henderson, J. T., Woo, M., Soengas, M. S., Elia, A., De la Pompa, J. L., Kagi, D., Khoo, W., Potter, J., Yoshida, R., Kaufman, S. A., Lowe, S. W., Penninger, J. M., and Mak, T. W.. 1998. Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352
  • Harada, H., Becknell, B., Wilm, M., Mann, M., Huang, L. J. S., Taylor, S. S., Scott, J. D., and Korsmeyer, S. J.. 1999. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3:413–422
  • Horvitz, H. R.. 1999. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res. 59:1701S–1706S
  • Imazu, T., Shimizu, S., Tagami, S., Matsushima, M., Nakamura, Y., Miki, T., Okuyama, A., and Tsujimoto, Y.. 1999. Bcl-2/E1B 19kDa-interacting protein 3-like protein (Bnip3L) interacts with Bcl-2/Bcl-xL and induces apoptosis by altering mitochondrial membrane permeability. Oncogene 18:4523–4529
  • Kawahara, A., Ohsawa, Y., Matsumura, H., Uchiyama, Y., and Nagata, S.. 1998. Caspase-independent cell killing by Fas-associated protein with death domain. J. Cell Biol. 143:1353–1360
  • Kerr, J. F. R., Wyllie, A. H., and Currie, A. R.. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257
  • Kitanaka, C., and Kuchino, Y.. 1999. Caspase-independent programmed cell death with necrotic morphology. Cell Death Differ. 6:508–515
  • Kluck, R. M., Degli-Esposti, M., Perkins, G., Renken, T., Kuwana, T., Bossy-Wetzel, E., Goldberg, Y. P., Allen, T. D., Farber, M. J., Green, D. R., and Newmeyer, D. D.. 1999. The pro-apoptotic proteins Bid and Bax cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J. Cell. Biol. 147:809–822
  • Kroemer, G., Dallaporta, B., and Resche-Rigon, M.. 1998. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60:619–642
  • Kroemer, G., Zamzami, N., and Susin, S. A.. 1997. Mitochondrial control of apoptosis. Immunol. Today 18:44–51
  • Lavoie, J. N., Nguyen, M., Marcellus, R. C., Branton, P. E., and Shore, G. C.. 1998. E4orf4, a novel adenovirus death factor that induces p53-independent apoptosis by a pathway that is not inhibited by zVAD-fmk. J. Cell Biol. 140:637–645
  • Leist, M., Single, B., Castoldi, A. F., Kuhnle, S., and Nicotera, P.. 1997. Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J. Exp. Med. 185:1481–1486
  • Lemasters, J. J., Nieminen, A. L., Qian, T., Trost, L. C., Elmore, S. P., Nishimura, Y., Crowe, R. A., Cascio, W. E., Bradham, C. A., Brenner, D. A., and Herman, B.. 1998. The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim. Biophys. Acta 1366:177–196
  • Li, H., Zhu, H., Xu, C. J., and Yuan, J.. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501
  • Li, P., Nijhawan, D., Budihardjo, I., Srinivasula, S. M., Ahmad, M., Alnemri, E. S., and Wang, X. D.. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489
  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X.. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490
  • Marzo, I., Brenner, C., Zamzami, N., Juergensmeier, J. M., Susin, S. A., Vieira, H. L. A., Prevost, M. C., Xie, Z. H., Matsuyama, S., Reed, J. C., and Kroemer, G.. 1998. Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031
  • Marzo, I., Brenner, C., Zamzami, N., Susin, S. A., Beutner, G., Brdiczka, D., Remy, R., Xie, Z. H., Reed, J. C., and Kroemer, G.. 1998. The permeability transition pore complex: A target for apoptosis regulation by caspases and Bcl-2-related proteins. J. Exp. Med. 187:1261–1271
  • Matsushima, M., Fujiwara, T., Takahashi, E., Minaguchi, T., Eguchi, Y., Tsujimoto, Y., Suzumori, K., and Nakamura, Y.. 1998. Isolation, mapping, and functional analysis of a novel human cDNA (BNIP3L) encoding a protein homologous to human Nip3. Genes Chromosomes Cancer 21:230–235
  • McCarthy, N. J., Whyte, M. K. B., Gilbert, C. S., and Evan, G. I.. 1997. Inhibition of Ced-3/ICE-related proteases does not prevent cell death induced by oncogenes, DNA damage, or the Bcl-2 homologue Bak. J. Cell Biol. 136:215–227
  • McConkey, D. J.. 1998. Biochemical determinants of apoptosis and necrosis. Toxicol. Lett. 99:157–168
  • Miura, M., Zhu, H., Rotello, R., Hartwieg, E. A., and Yuan, J.. 1993. Induction of apoptosis in fibroblasts by IL-1beta-converting enzyme, a mammalian homolog of the C. elegans cell death gene ced−. Cell 75:653–660
  • Narita, M., Shimizu, S., Ito, T., Chittenden, T., Lutz, R. J., Matsuda, H., and Tsujimoto, Y.. 1998. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc. Natl. Acad. Sci. USA 95:14681–14686
  • Nguyen, M., Millar, D. G., Yong, V. W., Korsmeyer, S. J., and Shore, G. C.. 1993. Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J. Biol. Chem. 268:25265–25268
  • Nicotera, P., Leist, M., and Ferrando-May, E.. 1998. Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol. Lett. 102–103:139–142
  • Ohi, N., Tokunaga, A., Tsunoda, H., Nakano, K., Haraguchi, K., Oda, K., Motoyama, N., and Nakajima, T.. 1999. A novel adenovirus E1B19K-binding protein B5 inhibits apoptosis induced by Nip3 by forming a heterodimer through the C-terminal hydrophobic region. Cell Death Differ. 6:314–325
  • Olie, R. A., Durrieu, F., Cornillon, S., Loughran, J., Gross, J., Earnshaw, W. C., and Golstein, P.. 1998. Apparent caspase independence of programmed cell death in Dictyostelium. Curr. Biol. 8:955–958
  • Pear, W. S., Nolan, G. P., Scott, M. L., and Baltimore, D.. 1995. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396
  • Puthalakath, H., Huang, D. C. S., O'Reilly, L. A., King, S. M., and Strasser, A.. 1999. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3:287–296
  • Quignon, F., De Bels, F., Koken, M., Feunteun, J., Ameisen, J. C., and De The, H.. 1998. PML induces a novel caspase-independent death process. Nat. Genet. 20:259–265
  • Ray, R., Chen, G., Vande Velde, C., Cizeau, J., Gietz, R. D., Reed, J. C., and Greenberg, A. H.. 2000. BNIP3 heterodimerizes with Bcl-2/Bcl-XL and induces cell death independent of the BH3 domain at both mitochondrial and non-mitochondrial sites. J. Biol. Chem. 275:1439–1448
  • Salvesen, G. S., and Dixit, V. M.. 1999. Caspase activation: the induced-proximity model. Proc. Natl. Acad. Sci. USA 96:10964–10967
  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E.. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687
  • Shimizu, S., Narita, M., and Tsujimoto, Y.. 1999. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487
  • Srinivasula, S. M., Ahmad, M., Fernandes-Alnemri, T., and Alnemri, E. S.. 1998. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1:949–957
  • Susin, S. A., Larochette, N., Geuskens, M., and Kroemer, G.. Purification of mitochondria for apoptosis assays. 2000 Methods Enzymol., in press.
  • Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G.. 1999. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446
  • Thornberry, N. A., and Lazebnik, Y.. 1998. Caspases: enemies within. Science 281:1312–1316
  • Tsujimoto, Y.. 1997. Apoptosis and necrosis: intracellular ATP level as a determinant for cell death modes. Cell Death Differ. 4:429–434
  • Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T., and Thompson, C. B.. 1997. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637
  • Vaux, D. L., and Korsmeyer, S. J.. 1999. Cell death in development. Cell 96:245–254
  • Wyllie, A. H., Kerr, F. F. R., and Currie, A. R.. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68:251–305
  • Xiang, J. L., Chao, D. T., and Korsmeyer, S. J.. 1996. BAX-induced cell death may not require interleukin 1beta-converting enzyme-like proteases. Proc. Natl. Acad. Sci. USA 93:14559–14563
  • Xue, L. Z., Fletcher, G. C., and Tolkovsky, A. M.. 1999. Autophagy is activated by apoptotic signalling in sympathetic neurons: an alternative mechanism of death execution. Mol. Cell Neurosci. 14:180–198
  • Yasuda, M., Han, J. W., Dionne, C. A., Boyd, J. M., and Chinnadurai, G.. 1999. BNIP3alpha: a human homolog of mitochondrial proapoptotic protein BNIP3. Cancer Res. 59:533–537
  • Yasuda, M., Theodorakis, P., Subramanian, T., and Chinnadurai, G.. 1998. Adenovirus E1B-19K/BCL-2 interacting protein BNIP3 contains a BH3 domain and a mitochondrial targeting sequence. J. Biol. Chem. 273:12415–12421
  • Zamzami, N., Marchetti, P., Castedo, M., Decaudin, D., Macho, A., Hirsch, T., Susin, S. A., Petit, P. X., Mignotte, B., and Kroemer, G.. 1995. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med. 182:367–377
  • Zha, J. P., Harada, H., Yang, E., Jockel, J., and Korsmeyer, S. J.. 1996. Serine phosphorylation of death agonist BAD in response to survival factor results in binding to 14-3-3 not BGL-XL. Cell 87:619–628
  • Zoratti, M., and Szabo, I.. 1995. The mitochondrial permeability transition. Biochim. Biophys. Acta 1241:139–176

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.