144
Views
988
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Increased Energy Expenditure, Decreased Adiposity, and Tissue-Specific Insulin Sensitivity in Protein-Tyrosine Phosphatase 1B-Deficient Mice

, , , , , , , , , , , , & show all
Pages 5479-5489 | Received 15 Mar 2000, Accepted 24 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Ahmad, F., Azevedo, J. L., Cortright, R., Dohm, G. L., and Goldstein, B. J.. 1997. Alterations in skeletal muscle protein-tyrosine phosphatase activity and expression in insulin-resistant human obesity and diabetes. J. Clin. Investig. 100:449–458
  • Ahmad, F., Considine, R. V., Bauer, T. L., Ohannesian, J. P., Marco, C. C., and Goldstein, B. J.. 1997. Improved sensitivity to insulin in obese subjects following weight loss is accompanied by reduced protein-tyrosine phosphatases in adipose tissue. Metabolism 46:1140–1145
  • Ahmad, F., Considine, R. V., and Goldstein, B. J.. 1995. Increased abundance of the receptor-type protein-tyrosine phosphatase LAR accounts for the elevated insulin receptor dephosphorylating activity in adipose tissue of obese human subjects. J. Clin. Investig. 95:2806–2812
  • Ahmad, F., and Goldstein, B. J.. 1995. Alterations in specific protein-tyrosine phosphatases accompany insulin resistance of streptozotocin diabetes. Am. J. Physiol. 268:E932–E940
  • Ahmad, F., and Goldstein, B. J.. 1995. Purification, identification and subcellular distribution of three predominant protein-tyrosine phosphatase enzymes in skeletal muscle tissue. Biochim. Biophys. Acta 1248:57–69
  • Ahmad, F., and Goldstein, B. J.. 1995. Increased abundance of specific skeletal muscle protein-tyrosine phosphatases in a genetic model of insulin-resistant obesity and diabetes mellitus. Metabolism 44:1175–1184
  • Ahmad, F., Li, P. M., Meyerovitch, J., and Goldstein, B. J.. 1995. Osmotic loading of neutralizing antibodies demonstrates a role for protein-tyrosine phosphatase 1B in negative regulation of the insulin action pathway. J. Biol. Chem. 270:20503–20508
  • Arregui, C. O., Balsamo, J., and Lilien, J.. 1998. Impaired integrin-mediated adhesion and signaling in fibroblasts expressing a dominant-negative mutant PTP1B. J. Cell Biol. 143:861–873 (Erratum, 143:1761, 1998.)
  • Astrup, A.. 1999. Macronutrient balances and obesity: the role of diet and physical activity. Public Health Nutr. 2:341–347
  • Balsamo, J., Arregui, C., Leung, T., and Lilien, J.. 1998. The nonreceptor protein tyrosine phosphatase PTP1B binds to the cytoplasmic domain of N-cadherin and regulates the cadherin-actin linkage. J. Cell Biol. 143:523–532
  • Baskin, D. G., Hahn, T. M., and Schwartz, M. W.. 1999. Leptin sensitive neurons in the hypothalamus. Horm. Metab. Res. 31:345–350
  • Begum, N., Sussman, K. E., and Draznin, B.. 1991. Differential effects of diabetes on adipocyte and liver phosphotyrosine and phosphoserine phosphatase activities. Diabetes 40:1620–1629
  • Bleyle, L. A., Peng, Y., Ellis, C., and Mooney, R. A.. 1999. Dissociation of PTPase levels from their modulation of insulin receptor signal transduction. Cell Signal 11:719–725
  • Boss, O., Samec, S., Paoloni-Giacobino, A., Rossier, C., Dulloo, A., Seydoux, J., Muzzin, P., and Giacobino, J. P.. 1997. Uncoupling protein-3: a new member of the mitochondrial carrier family with tissue-specific expression. FEBS Lett. 408:39–42
  • Boss, O., Bachman, E., Vidal-Puig, A., Zhang, C. Y., Peroni, O., and Lowell, B. B.. 1999. Role of the beta(3)-adrenergic receptor and/or a putative beta(4)-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-gamma coactivator-1. Biochem. Biophys. Res. Commun. 261:870–876
  • Boss, O., Hagen, T., and Lowell, B. B.. 2000. Uncoupling proteins 2 and 3: potential regulators of mitochondrial energy metabolism. Diabetes 49:143–156
  • Boylan, J. M., Brautigan, D. L., Madden, J., Raven, T., Ellis, L., and Gruppuso, P. A.. 1992. Differential regulation of multiple hepatic protein tyrosine phosphatases in alloxan diabetic rats. J. Clin. Investig. 90:174–179
  • Bray, M. S.. 2000. Genomics, genes, and environmental interaction: the role of exercise. J. Appl. Physiol. 88:788–792
  • Byon, J. C., Kusari, A. B., and Kusari, J.. 1998. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction. Mol. Cell. Biochem. 182:101–108
  • Cheung, A., Kusari, J., Jansen, D., Bandyopadhyay, D., Kusari, A., and Bryer-Ash, M.. 1999. Marked impairment of protein tyrosine phosphatase 1B activity in adipose tissue of obese subjects with and without type 2 diabetes mellitus. J. Lab. Clin. Med. 134:115–123
  • Cousin, B., Cinti, S., Morroni, M., Raimbault, S., Ricquier, D., Penicaud, L., and Casteilla, L.. 1992. Occurrence of brown adipocytes in rate white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103:931–942
  • Cushman, S. W., and Salans, L. B.. 1978. Determinations of adipose cell size and number in suspensions of isolated rat and human adipose cells. J. Lipid Res. 19:269–273
  • Czech, M. P.. 1976. Cellular basis of insulin insensitivity in large rat adipocytes. J. Clin. Investig. 57:1523–1532
  • Czech, M. P., and Corvera, S.. 1999. Signaling mechanisms that regulate glucose transport. J. Biol. Chem. 274:1865–1868
  • DeFronzo, R. A.. 1997. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 5:177–269
  • Di Guglielmo, G. M., Drake, P. G., Baass, P. C., Authier, F., Posner, B. I., and Bergeron, J. J.. 1998. Insulin receptor internalization and signalling. Mol. Cell. Biochem. 182:59–63
  • Echwald, S. M.. 1999. Genetics of human obesity: lessons from mouse models and candidate genes. J. Intern. Med. 245:653–666
  • Elchebly, M., Payette, P., Michaliszyn, E., Cromlish, W., Collins, S., Loy, A. L., Normandin, D., Cheng, A., Himms-Hagen, J., Chan, C. C., Ramachandran, C., Gresser, M. J., Tremblay, M. L., and Kennedy, B. P.. 1999. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283:1544–1548
  • Elmquist, J. K., Maratos-Flier, E., Saper, C. B., and Flier, J. S.. 1998. Unraveling the central nervous system pathways underlying responses to leptin. Nat. Neurosci. 1:445–450
  • Faure, R., Baquiran, G., Bergeron, J. J., and Posner, B. I.. 1992. The dephosphorylation of insulin and epidermal growth factor receptors. Role of endosome-associated phosphotyrosine phosphatase(s). J. Biol. Chem. 267:11215–11221
  • Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, O., Levi-Meyrueis, C., Bouillaud, F., Seldin, M. F., Surwit, R. S., Ricquier, D., and Warden, C. H.. 1997. Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinemia. Nat. Genet. 15:269–272
  • Flint, A. J., Gebbink, M. F., Franza, B. R.Jr., Hill, D. E., and Tonks, N. K.. 1993. Multi-site phosphorylation of the protein tyrosine phosphatase, PTP1B: identification of cell cycle regulated and phorbol ester stimulated sites of phosphorylation. EMBO J. 12:1937–1946
  • Flint, A. J., Tiganis, T., Barford, D., and Tonks, N. K.. 1997. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 94:1680–1685
  • Foreyt, J. P., Poston, W. S.II.. 1999. The challenge of diet, exercise and lifestyle modification in the management of the obese diabetic patient. Int. J. Obes. Relat. Metab. Disord. 23 (Suppl. 7):S5–S11
  • Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A., and Neel, B. G.. 1992. The nontransmembrane tyrosine phosphatase PTP-1B localizes to the endoplasmic reticulum via its 35 amino acid C-terminal sequence. Cell 68:545–560
  • Goldstein, B. J., Ahmad, F., Ding, W., Li, P. M., and Zhang, W. R.. 1998. Regulation of the insulin signalling pathway by cellular protein-tyrosine phosphatases. Mol. Cell. Biochem. 182:91–99
  • Grimm, J. J.. 1999. Interaction of physical activity and diet: implications for insulin-glucose dynamics. Public Health Nutr. 2:363–368
  • Guerra, C., Koza, R. A., Yamashita, H., Walsh, K., and Kozak, L. P.. 1998. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J. Clin. Investig. 102:412–420
  • Hashimoto, N., Feener, E. P., Zhang, W. R., and Goldstein, B. J.. 1992. Insulin receptor protein-tyrosine phosphatases. Leukocyte common antigen-related phosphatase rapidly deactivates the insulin receptor kinase by preferential dephosphorylation of the receptor regulatory domain. J. Biol. Chem. 267:13811–13814
  • Hauguel-de Mouzon, S., Peraldi, P., Alengrin, F., and Van Obberghen, E.. 1993. Alteration of phosphotyrosine phosphatase activity in tissues from diabetic and pregnant rats. Endocrinology 132:67–74
  • Himms-Hagen, J.. 1989. Brown adipose tissue thermogenesis and obesity. Prog. Lipid Res. 28:67–115
  • Kahn, C. R.. 1994. Banting Lecture. Insulin action, diabetogenes, and the cause of type II diabetes. Diabetes 43:1066–1084
  • Kao, A. W., Waters, S. B., Okada, S., and Pessin, J. E.. 1997. Insulin stimulates the phosphorylation of the 66- and 52-kilodalton Shc isoforms by distinct pathways. Endocrinology 138:2474–2480
  • Kenner, K. A., Hill, D. E., Olefsky, J. M., and Kusari, J.. 1993. Regulation of protein tyrosine phosphatases by insulin and insulin-like growth factor I. J. Biol. Chem. 268:25455–25462
  • Kenner, K. A., Anyanwu, E., Olefsky, J. M., and Kusari, J.. 1996. Protein-tyrosine phosphatase 1B is a negative regulator of insulin- and insulin-like growth factor-I-stimulated signaling. J. Biol. Chem. 271:19810–19819
  • Kuhne, M. R., Pawson, T., Lienhard, G. E., and Feng, G. S.. 1993. The insulin receptor substrate 1 associates with the SH2-containing phosphotyrosine phosphatase Syp. J. Biol. Chem. 268:11479–11481
  • Kusari, J., Kenner, K. A., Suh, K. I., Hill, D. E., and Henry, R. R.. 1994. Skeletal muscle protein tyrosine phosphatase activity and tyrosine phosphatase 1B protein content are associated with insulin action and resistance. J. Clin. Investig. 93:1156–1162
  • Liu, F., Hill, D. E., and Chernoff, J.. 1996. Direct binding of the proline-rich region of protein tyrosine phosphatase 1B to the Src homology 3 domain of p130(Cas). J. Biol. Chem. 271:31290–31295
  • Liu, F., Sells, M. A., and Chernoff, J.. 1998. Protein tyrosine phosphatase 1B negatively regulates integrin signaling. Curr. Biol. 8:173–176
  • Lowell, B. B., and Spiegelman, B. M.. 2000. Towards a molecular understanding of adaptive thermogenesis. Nature 404:652–660
  • Maegawa, H., Hasegawa, M., Sugai, S., Obata, T., Ugi, S., Morino, K., Egawa, K., Fujita, T., Sakamoto, T., Nishio, Y., Kojima, H., Haneda, M., Yasuda, H., Kikkawa, R., and Kashiwagi, A.. 1999. Expression of a dominant negative SHP-2 in transgenic mice induces insulin resistance. J. Biol. Chem. 274:30236–30243
  • McGuire, M. C., Fields, R. M., Nyomba, B. L., Raz, I., Bogardus, C., Tonks, N. K., and Sommercorn, J.. 1991. Abnormal regulation of protein tyrosine phosphatase activities in skeletal muscle of insulin-resistant humans. Diabetes 40:939–942
  • Myers, M. G.Jr., Mendez, R., Shi, P., Pierce, J. H., Rhoads, R., and White, M. F.. 1998. The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling. J. Biol. Chem. 273:26908–26914
  • National Institutes of Health. 1985. Guide for the care and use of laboratory animals, rev. ed. Department of Health and Human Services publication no. (NIH) 85-23. National Institutes of Health, Bethesda, Md
  • Olefsky, J. M.. 1999. Insulin-stimulated glucose transport minireview series. J. Biol. Chem. 274: 1863
  • Porte, D.Jr., Seeley, R. J., Woods, S. C., Baskin, D. G., Figlewicz, D. P., and Schwartz, M. W.. 1998. Obesity, diabetes and the central nervous system. Diabetologia 41:863–881
  • Ren, J. M., Marshall, B. A., Mueckler, M. M., McCaleb, M., Amatruda, J. M., and Shulman, G. I.. 1995. Overexpression of Glut4 protein in muscle increases basal and insulin-stimulated whole body glucose disposal in conscious mice. J. Clin. Investig. 95:429–432
  • Ricquier, D., Mory, G., Bouillaud, F., Combes-George, M., and Thibault, J.. 1985. Factors controlling brown adipose tissue development. Reprod. Nutr. Dev. 25:175–181
  • Ricquier, D., and Bouillaud, F.. 2000. The uncoupling protein homologues: UCP1, UCP2, UCP3, StUCP and AtUCP. Biochem. J. 345:161–179
  • Rothwell, N. J., and Stock, M. J.. 1979. A role for brown adipose tissue in diet-induced thermogenesis. Nature 281:31–35
  • Salmon, D. M., and Flatt, J. P.. 1985. Effect of dietary fat content on the incidence of obesity among ad libitum fed mice. Int. J. Obes. 9:443–449
  • Schievella, A. R., Paige, L. A., Johnson, K. A., Hill, D. E., and Erikson, R. L.. 1993. Protein tyrosine phosphatase 1B undergoes mitosis-specific phosphorylation on serine. Cell Growth Differ. 4:239–246
  • Seely, B. L., Staubs, P. A., Reichart, D. R., Berhanu, P., Milarski, K. L., Saltiel, A. R., Kusari, J., and Olefsky, J. M.. 1996. Protein tyrosine phosphatase 1B interacts with the activated insulin receptor. Diabetes 45:1379–1385
  • Shifrin, V. I., Davis, R. J., and Neel, B. G.. 1997. Phosphorylation of protein-tyrosine phosphatase PTP-1B on identical sites suggests activation of a common signaling pathway during mitosis and stress response in mammalian cells. J. Biol. Chem. 272:2957–2962
  • Silva, J. E., and Rabelo, R.. 1997. Regulation of the uncoupling protein gene expression. Eur. J. Endocrinol. 136:251–264
  • Stock, M. J., and Rothwell, N. J.. 1985. Factors influencing brown fat and the capacity for diet-induced thermogenesis. Int. J. Obes. 9 (Suppl. 2):9–15
  • Strack, A. M., Horsley, C. J., Sebastian, R. J., Akana, S. F., and Dallman, M. F.. 1995. Glucocorticoids and insulin: complex interaction on brown adipose tissue. Am. J. Physiol. 268:R1209–R1216
  • Tozzo, E., Gnudi, L., and Kahn, B. B.. 1997. Amelioration of insulin resistance in streptozotocin diabetic mice by transgenic overexpression of GLUT4 driven by an adipose-specific promoter. Endocrinology 138:1604–1611
  • Ugi, S., Maegawa, H., Kashiwagi, A., Adachi, M., Olefsky, J. M., and Kikkawa, R.. 1996. Expression of dominant negative mutant SHPTP2 attenuates phosphatidylinositol 3′-kinase activity via modulation of phosphorylation of insulin receptor substrate-1. J. Biol. Chem. 271:12595–12602
  • White, M. F.. 1998. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 182:3–11
  • Williams, G.. 1999. Obesity and type 2 diabetes: a conflict of interests? Int. J. Obes. Relat. Metab. Disord. 23 (Suppl. 7):S2–S4
  • Woodford-Thomas, T. A., Rhodes, J. D., and Dixon, J. E.. 1992. Expression of a protein tyrosine phosphatase in normal and v-src-transformed mouse 3T3 fibroblasts. J. Cell Biol. 117:401–414
  • Worm, D., Vinten, J., Staehr, P., Henriksen, J. E., Handberg, A., and Beck-Nielsen, H.. 1996. Altered basal and insulin-stimulated phosphotyrosine phosphatase (PTPase) activity in skeletal muscle from NIDDM patients compared with control subjects. Diabetologia 39:1208–1214
  • Youn, J. H., Kim, J. K., and Steil, G. M.. 1995. Assessment of extracellular glucose distribution and glucose transport activity in conscious rats. Am. J. Physiol. 268:E712–E7121
  • Zhang, Y., Proenca, R., Maffei, M., Barone, M., Leopold, L., and Friedman, J. M.. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432 (Erratum, 374:479, 1995.)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.