84
Views
143
CrossRef citations to date
0
Altmetric
Gene Expression

Bop1 Is a Mouse WD40 Repeat Nucleolar Protein Involved in 28S and 5.8S rRNA Processing and 60S Ribosome Biogenesis

, &
Pages 5516-5528 | Received 08 Mar 2000, Accepted 11 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Allmang, C., Petfalski, E., Podtelejnikov, A., Mann, M., Tollervey, D., and Mitchell, P.. 1999. The yeast exosome and human PM-Scl are related complexes of 3′→5′ exonucleases. Genes Dev. 13:2148–2158
  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1994. Current protocols in molecular biology. John Wiley & Sons, Inc., New York, N.Y
  • Ayadi, L., Miller, M., and Banroques, J.. 1997. Mutations within the yeast U4/U6 snRNP protein Prp4 affect a late stage of spliceosome assembly. RNA 3:197–209
  • Bachant, J. B., and Elledge, S. J.. 1999. Mitotic treasures in the nucleolus. Nature 398:757–758
  • Baim, S. B., Labow, M. A., Levine, A. J., and Shenk, T.. 1991. A chimeric mammalian transactivator based on the lac repressor that is regulated by temperature and isopropyl β-d-thiogalactopyranoside. Proc. Natl. Acad. Sci. USA 88:5072–5076
  • Ben Yehuda, S., Dix, I., Russell, C. S., Levy, S., Beggs, J. D., and Kupiec, M.. 1998. Identification and functional analysis of hPRP17, the human homologue of the PRP17/CDC40 yeast gene involved in splicing and cell cycle control. RNA 4:1304–1312
  • Bjorn, S. P., Soltyk, A., Beggs, J. D., and Friesen, J. D.. 1989. PRP4 (RNA4) from Saccharomyces cerevisiae: its gene product is associated with the U4/U6 small nuclear ribonucleoprotein particle. Mol. Biol. Cell 9:3698–3709
  • Bowman, L. H., Rabin, B., and Schlessinger, D.. 1981. Multiple ribosomal RNA cleavage pathways in mammalian cells. Nucleic Acids Res. 9:4951–4966
  • Brenner, C., Nakayama, N., Goebl, M., Tanaka, K., Toh-e, A., and Matsumoto, K.. 1988. CDC33 encodes mRNA cap-binding protein eIF-4E of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:3556–3559
  • Carpousis, A. J., Vanzo, N. F., and Raynal, L. C.. 1999. mRNA degradation. A tale of poly(A) and multiprotein machines. Trends Genet. 15:24–28
  • Chang, J. H., and Olson, M. O.. 1990. Structure of the gene for rat nucleolar protein B23. J. Biol. Chem. 265:18227–18233
  • Chen, C. A., and Okayama, H.. 1988. Calcium phosphate-mediated gene transfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. BioTechniques 6:632–638
  • Chevaillier, P.. 1993. Pest sequences in nuclear proteins. Int. J. Biochem. 25:479–482
  • Dalrymple, M. A., Petersen-Bjorn, S., Friesen, J. D., and Beggs, J. D.. 1989. The product of the PRP4 gene of S. cerevisiae shows homology to beta subunits of G proteins. Cell 58:811–812
  • Daugeron, M. C., and Linder, P.. 1998. Dbp7p, a putative ATP-dependent RNA helicase from Saccharomyces cerevisiae, is required for 60S ribosomal subunit assembly. RNA 4:566–581
  • Dechampesme, A. M., Koroleva, O., Leger-Silvestre, I., Gas, N., and Camier, S.. 1999. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J. Cell Biol. 145:1369–1380
  • Decker, C. J.. 1998. The exosome: a versatile RNA processing machine. Curr. Biol. 8:R238–R240
  • de la Cruz, J., Kressler, D., Rojo, M., Tollervey, D., and Linder, P.. 1998. Spb4p, an essential putative RNA helicase, is required for a late step in the assembly of 60S ribosomal subunits in Saccharomyces cerevisiae. RNA 4:1268–1281
  • Deshmukh, M., Stark, J., Yeh, L. C., Lee, J. C., Woolford, J. L.Jr.. 1995. Multiple regions of yeast ribosomal protein L1 are important for its interaction with 5 S rRNA and assembly into ribosomes. J. Biol. Chem. 270:30148–30156
  • Dingwall, C., and Laskey, R. A.. 1991. Nuclear targeting sequences—a consensus? Trends Biochem. Sci. 16:478–481
  • Eichler, D. C., and Craig, N.. 1994. Processing of eukaryotic ribosomal RNA. Prog. Nucleic Acid Res. Mol. Biol. 49:197–239
  • Elela, S. A., Igel, H., and Ares, M. J.. 1996. RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site. Cell 85:115–124
  • Field, J., Nikawa, J., Broek, D., MacDonald, B., Rodgers, L., Wilson, I. A., Lerner, R. A., and Wigler, M.. 1988. Purification of a RAS-responsive adenylyl cyclase complex from Saccharomyces cerevisiae by use of an epitope addition method. Mol. Cell. Biol. 8:2159–2165
  • Fujikawa-Yamamoto, K.. 1982. RNA dependence in the cell cycle of V79 cells. J. Cell Physiol. 112:60–66
  • Garcia-Bustos, J., Heitman, J., and Hall, M. N.. 1991. Nuclear protein localization. Biochim. Biophys. Acta 1071:83–101
  • Garcia-Higuera, I., Fenoglio, J., Li, Y., Lewis, C., Panchenko, M. P., Reiner, O., Smith, T. F., and Neer, E. J.. 1996. Folding of proteins with WD-repeats: comparison of six members of the WD-repeat superfamily to the G protein beta subunit. Biochemistry 35:13985–13994
  • Garcia-Higuera, I., Gaitatzes, C., Smith, T. F., and Neer, E. J.. 1998. Folding a WD repeat propeller. Role of highly conserved aspartic acid residues in the G protein beta subunit and Sec13. J. Biol. Chem. 273:9041–9049
  • Geiduschek, E. P., and Tocchini-Valentini, G. P.. 1988. Transcription by RNA polymerase III. Annu. Rev. Biochem. 57:873–914
  • Ginisty, H., Sicard, H., Roger, B., and Bouvet, P.. 1999. Structure and functions of nucleolin. J. Cell Sci. 112:761–772
  • Gustafson, W. C., Taylor, C. W., Valdez, B. C., Henning, D., Phippard, A., Ren, Y., Busch, H., and Durban, E.. 1998. Nucleolar protein p120 contains an arginine-rich domain that binds to ribosomal RNA. Biochem. J. 331:387–393
  • Hadjiolova, K. V., Nicoloso, M., Mazan, S., Hadjiolov, A. A., and Bachellerie, J. P.. 1993. Alternative pre-rRNA processing pathways in human cells and their alteration by cycloheximide inhibition of protein synthesis. Eur. J. Biochem. 212:211–215
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Hazlewood, J., Fonagy, A., Henning, D., Freeman, J. W., Busch, R. K., and Busch, H.. 1989. mRNA levels for human nucleolar protein P120 in tumor and nontumor cells. Cancer Commun. 1:29–34
  • Henriquez, R., Blobel, G., and Aris, J. P.. 1990. Isolation and sequencing of NOP1. A yeast gene encoding a nucleolar protein homologous to a human autoimmune antigen. J. Biol. Chem. 265:2209–2215
  • Henry, Y., Wood, H., Morrissey, J. P., Petfalski, E., Kearsey, S., and Tollervey, D.. 1994. The 5′ end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. EMBO J. 13:2452–2463
  • Hong, B., Brockenbrough, J. S., Wu, P., and Aris, J. P.. 1997. Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast. Mol. Biol. Cell. 17:378–388
  • Jackson, A. J., Ittmann, M., and Pugh, B. F.. 1995. The BN51 protein is a polymerase (Pol)-specific subunit of RNA Pol III which reveals a link between Pol III transcription and pre-rRNA processing. Mol. Cell. Biol. 15:94–101
  • Jansen, R., Tollervey, D., and Hurt, E. C.. 1993. A U3 snoRNP protein with homology to splicing factor PRP4 and G beta domains is required for ribosomal RNA processing. EMBO J. 12:2549–2558
  • Johnson, A. W.. 1997. Rat1p and Xrn1p are functionally interchangeable exoribonucleases that are restricted to and required in the nucleus and cytoplasm, respectively. Mol. Cell. Biol. 17:6122–6130
  • Jordan, P., Mannervik, M., Tora, L., and Carmo-Fonseca, M.. 1996. In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J. Cell Biol. 133:225–234
  • Kressler, D., de la Cruz, J., Rojo, M., and Linder, P.. 1998. Dbp6p is an essential putative ATP-dependent RNA helicase required for 60S-ribosomal-subunit assembly in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:1855–1865
  • Liau, M. C., and Perry, R. P.. 1969. Ribosome precursor particles in nucleoli. J. Cell Biol. 42:272–283
  • Lischwe, M. A., Ochs, R. L., Reddy, R., Cook, R. G., Yeoman, L. C., Tan, E. M., Reichlin, M., and Busch, H.. 1985. Purification and partial characterization of a nucleolar scleroderma antigen (Mr = 34,000; pI, 8.5) rich in NG,NG-dimethylarginine. J. Biol. Chem. 260:14304–14310
  • Lygerou, Z., Allmang, C., Tollervey, D., and Seraphin, B.. 1996. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science 272:268–270
  • Maxwell, E. S., and Fournier, M. J.. 1995. The small nucleolar RNAs. Annu. Rev. Biochem. 64:897–934
  • McEwen, C. R.. 1967. Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Anal. Biochem. 20:114–149
  • Mirault, M. E., and Scherrer, K.. 1971. Isolation of preribosomes from HeLa cells and their characterization by electrophoresis on uniform and exponential-gradient-polyacrylamide gels. Eur. J. Biochem. 23:372–386
  • Mitchell, P., Petfalski, E., Shevchenko, A., Mann, M., and Tollervey, D.. 1997. The exosome: a conserved eukaryotic RNA processing complex containing multiple 3′→5′ exoribonucleases. Cell 91:457–466
  • Moritz, M., Pulaski, B. A., Woolford, J. L.Jr.. 1991. Assembly of 60S ribosomal subunits is perturbed in temperature-sensitive yeast mutants defective in ribosomal protein L16. Mol. Cell. Biol. 11:5681–5692
  • Muhlrad, D., Decker, C. J., and Parker, R.. 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15:2145–2156
  • Neer, E. J., Schmidt, C. J., Nambudripad, R., and Smith, T. F.. 1994. The ancient regulatory-protein family of WD-repeat proteins. Nature 371:297–300
  • Neer, E. J., and Smith, T. F.. 1996. G protein heterodimers: new structures propel new questions. Cell 84:175–178
  • Ochs, R. L., Lischwe, M. A., Spohn, W. H., and Busch, H.. 1985. Fibrillarin: a new protein of the nucleolus identified by autoimmune sera. Biol. Cell 54:123–133
  • O'Day, C. L., Chavanikamannil, F., and Abelson, J.. 1996. 18S rRNA processing requires the RNA helicase-like protein Rrp3. Nucleic Acids Res. 24:3201–3207
  • Olson, M. O., Guetzow, K., and Busch, H.. 1981. Localization of phosphoprotein C23 in nucleoli by immunological methods. Exp. Cell Res. 135:259–265
  • Peculis, B. A., and Steitz, J. A.. 1993. Disruption of U8 nucleolar snRNA inhibits 5.8S and 28S rRNA processing in the Xenopus oocyte. Cell 73:1233–1245
  • Pederson, T.. 1998. The plurifunctional nucleolus. Nucleic Acids Res. 26:3871–3876
  • Pestov, D. G., Grzeszkiewicz, T. M., and Lau, L. F.. 1998. Isolation of growth suppressors from a cDNA expression library. Oncogene 17:3187–3197
  • Pestov, D. G., and Lau, L. F.. 1994. Genetic selection of growth-inhibitory sequences in mammalian cells. Proc. Natl. Acad. Sci. USA 91:12549–12553
  • Pluk, H., Soffner, J., Luhrmann, R., and van Venrooij, W. J.. 1998. cDNA cloning and characterization of the human U3 small nucleolar ribonucleoprotein complex-associated 55-kilodalton protein. Mol. Cell. Biol. 18:488–498
  • Rechsteiner, M., and Rogers, S. W.. 1996. PEST sequences and regulation by proteolysis. Trends Biochem. Sci. 21:267–271
  • Reimer, G., Pollard, K. M., Penning, C. A., Ochs, R. L., Lischwe, M. A., Busch, H., and Tan, E. M.. 1987. Monoclonal autoantibody from a (New Zealand black × New Zealand white) F1 mouse and some human scleroderma sera target an Mr 34,000 nucleolar protein of the U3 RNP particle. Arthritis Rheum. 30:793–800
  • Ripmaster, T. L., Vaughn, G. P., Woolford, J. L.Jr.. 1992. A putative ATP-dependent RNA helicase involved in Saccharomyces cerevisiae ribosome assembly. Proc. Natl. Acad. Sci. USA 89:11131–11135
  • Rotenberg, M. O., Moritz, M., Woolford, J. L.Jr.. 1988. Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polyribosomes. Genes Dev. 2:160–172
  • Rudland, P. S., Weil, S., and Hunter, A. R.. 1975. Changes in RNA metabolism and accumulation of presumptive messenger RNA during transition from the growing to the quiescent state of cultured mouse fibroblasts. J. Mol. Biol. 96:745–766
  • Russell, I. D., and Tollervey, D.. 1992. NOP3 is an essential yeast protein which is required for pre-rRNA processing. J. Cell Biol. 119:737–747
  • Salama, S. R., Hendricks, K. B., and Thorner, J.. 1994. G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol. Cell. Biol. 14:7953–7966
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Scheer, U., and Weisenberger, D.. 1989. 1994. The nucleolus. Curr. Opin. Cell Biol. 6:354–359
  • Seuwen, K., Steiner, U., and Adam, G.. 1984. Cellular content of ribosomal RNA in relation to the progression and competence signals governing proliferation of 3T3 and SV40-3T3 cells. Exp. Cell Res. 154:10–24
  • Shaw, P. J., and Jordan, E. G.. 1995. The nucleolus. Annu. Rev. Cell Dev. Biol. 11:93–121
  • Smith, T. F., Gaitatzes, C., Saxena, K., and Neer, E. J.. 1999. The WD repeat: a common architecture for diverse functions. Trends Biochem. Sci. 24:181–185
  • Sugden, B., Marsh, K., and Yates, J.. 1985. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol. Cell. Biol. 5:410–413
  • Sun, C., Woolford, J. L.Jr.. 1994. The yeast NOP4 gene product is an essential nucleolar protein required for pre-rRNA processing and accumulation of 60S ribosomal subunits. EMBO J. 13:3127–3135
  • Tollervey, D.. 1996. Trans-acting factors in ribosome synthesis. Exp. Cell Res. 229:226–232
  • Tollervey, D., and Kiss, T.. 1997. Function and synthesis of small nucleolar RNAs. Curr. Opin. Cell Biol. 9:337–342
  • Tuteja, R., and Tuteja, N.. 1998. Nucleolin: a multifunctional major nucleolar phosphoprotein. Crit. Rev. Biochem. Mol. Biol. 33:407–436
  • Venema, J., Bousquet-Antonelli, C., Gelugne, J. P., Caizergues-Ferrer, M., and Tollervey, D.. 1997. Rok1p is a putative RNA helicase required for rRNA processing. Mol. Cell. Biol. 17:3398–3407
  • Venema, J., and Tollervey, D.. 1999. Ribosome synthesis in Saccharomyces cerevisiae. Annu. Rev. Genet. 33:261–311
  • Warner, J. R.. 1989. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53:256–271
  • Warner, J. R.. 1990. The nucleolus and ribosome formation. Curr. Opin. Cell Biol. 2:521–527
  • Warner, J. R., and Soeiro, R.. 1967. Nascent ribosomes from HeLa cells. Proc. Natl. Acad. Sci. USA 58:1984–1990
  • Weinstein, L. B., and Steitz, J. A.. 1999. Guided tours: from precursor snoRNA to functional snoRNP. Curr. Opin. Cell Biol. 11:378–384
  • Wilkinson, D. S., Tlsty, T. D., and Hanas, R. J.. 1999. The inhibition of ribosomal RNA synthesis and maturation in Novikoff hepatoma cells by 5-fluorouridine. Cancer Res. 35:3014–3020
  • Woolford, J. L. J.. 1991. The structure and biogenesis of yeast ribosomes. Adv. Genet. 29:63–118
  • Zanchin, N. I., and Goldfarb, D. S.. 1999. Nip7p interacts with Nop8p, an essential nucleolar protein required for 60S ribosome biogenesis, and the exosome subunit Rrp43p. Mol. Cell. Biol. 19:1518–1525
  • Zanchin, N. I., Roberts, P., DeSilva, A., Sherman, F., and Goldfarb, D. S.. 1997. Saccharomyces cerevisiae Nip7p is required for efficient 60S ribosome subunit biogenesis. Mol. Cell. Biol. 17:5001–5015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.