23
Views
74
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Adenovirus E1B 55-Kilodalton Oncoprotein Inhibits p53 Acetylation by PCAF

, , &
Pages 5540-5553 | Received 29 Nov 1999, Accepted 02 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Ait-Si-Ali, S., Ramirez, S., Barre, F. X., Dkhissi, F., Magnaghi-Jaulin, L., Girault, J. A., Robin, P., Knibiehler, M., Pritchard, L. L., Ducommun, B., Trouche, D., and Harel-Bellan, A.. 1998. Histone acetyltransferase activity of CBP is controlled by cycle-dependent kinases and oncoprotein E1A. Nature 396:184–186
  • Bargonetti, J., Friedman, P. N., Kern, S. E., Vogelstein, B., and Prives, C.. 1991. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091
  • Barker, D. D., and Berk, A. J.. 1987. Adenovirus proteins from both E1B reading frames are required for transformation of rodent cells by viral infection and DNA transfection. Virology 156:107–121
  • Candau, R., Zhou, J. X., Allis, C. D., and Berger, S. L.. 1997. Histone acetyltransferase activity and interaction with ADA2 are critical for GCN5 function in vivo. EMBO J. 16:555–565
  • Chakravarti, D., Ogryzko, V., Kao, H. Y., Nash, A., Chen, H., Nakatani, Y., and Evans, R. M.. 1999. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 96:393–403
  • Davie, J. R.. 1998. Covalent modifications of histones: expression from chromatin templates. Curr. Opin. Genet. Dev. 8:173–178
  • Debbas, M., and White, E.. 1993. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7:546–554
  • Dhalluin, C., Carlson, J. E., Zeng, L., He, C., Aggarwal, A. K., and Zhou, M. M.. 1999. Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496
  • Dobbelstein, M., Roth, J., Kimberly, W. T., Levine, A. J., and Shenk, T.. 1997. Nuclear export of the E1B 55-kDa and E4 34-kDa adenoviral oncoproteins mediated by a rev-like signal sequence. EMBO J. 16:4276–4284
  • Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R., and Prives, C.. 1992. Wild-type p53 activates transcription in vitro. Nature 358:83–86
  • Flint, J., and Shenk, T.. 1997. Viral transactivating proteins. Annu. Rev. Genet. 31:177–212
  • Gallimore, P. H., Lecane, P. S., Roberts, S., Rookes, S. M., Grand, R. J., and Parkhill, J.. 1997. Adenovirus type 12 early region 1B 54K protein significantly extends the life span of normal mammalian cells in culture. J. Virol. 71:6629–6640
  • Gottlieb, T. M., and Oren, M.. 1996. p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287:77–102
  • Graham, F. L., Abrahams, P. J., Mulder, C., Heijneker, H. L., Warnaar, S. O., De Vries, F. A., Fiers, W., and Van Der Eb, A. J.. 1975. Studies on in vitro transformation by DNA and DNA fragments of human adenoviruses and simian virus 40. Cold Spring Harbor Symp. Quant. Biol. 39:637–650
  • Graham, F. L., Smiley, J., Russell, W. C., and Nairn, R.. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–74
  • Grand, R. J., Grant, M. L., and Gallimore, P. H.. 1994. Enhanced expression of p53 in human cells infected with mutant adenoviruses. Virology 203:229–240
  • Gu, W., and Roeder, R. G.. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606
  • Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W., and Weinberg, R. A.. 1999. Creation of human tumour cells with defined genetic elements. Nature 400:464–468
  • Hamamori, Y., Sartorelli, V., Ogryzko, V., Puri, P. L., Wu, H. Y., Wang, J. Y., Nakatani, Y., and Kedes, L.. 1999. Regulation of histone acetyltransferases p300 and PCAF by the bHLH protein twist and adenoviral oncoprotein E1A. Cell 96:405–413
  • Hupp, T. R., Meek, D. W., Midgley, C. A., and Lane, D. P.. 1992. Regulation of the specific DNA binding function of p53. Cell 71:875–886
  • Iwabuchi, K., Li, B., Bartel, P., and Fields, S.. 1993. Use of the two-hybrid system to identify the domain of p53 involved in oligomerization. Oncogene 8:1693–1696
  • James, P., Halladay, J., and Craig, E. A.. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436
  • Jiang, H., Lu, H., Schlitz, R. L., Pise-Masison, C. A., Ogryzko, V. V., Nakatani, Y., and Brady, J. N.. 1999. PCAF interacts with tax and stimulates tax transactivation in a histone acetyltransferase-independent manner. Mol. Cell. Biol. 19:8136–8145
  • Kao, C. C., Yew, P. R., and Berk, A. J.. 1990. Domains required for in vitro association between the cellular p53 and the adenovirus 2 E1B 55K proteins. Virology 179:806–814
  • Ko, L. J., and Prives, C.. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072
  • Kouzarides, T.. 2000. Acetylation: a regulatory modification to rival phosphorylation? EMBO J. 19:1176–1179
  • Kuo, M. H., and Allis, C. D.. 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20:615–626
  • Labbe, S., Zhu, Z., and Thiele, D. J.. 1997. Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J. Biol. Chem. 272:15951–15958
  • Lane, D.. 1998. Awakening angels. Nature 394:616–617
  • Lane, D. P., and Crawford, L. V.. 1979. T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Liao, D., Yu, A., and Weiner, A. M.. 1999. Coexpression of the adenovirus 12 E1B 55 kDa oncoprotein and cellular tumor suppressor p53 is sufficient to induce metaphase fragility of the human RNU2 locus. Virology 254:11–23
  • Lin, J., Chen, J., Elenbaas, B., and Levine, A. J.. 1994. Several hydrophobic amino acids in the p53 amino-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55-kD protein. Genes Dev. 8:1235–1246
  • Linzer, D. I., and Levine, A. J.. 1979. Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52
  • Liu, L., Scolnick, D. M., Trievel, R. C., Zhang, H. B., Marmorstein, R., Halazonetis, T. D., and Berger, S. L.. 1999. p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol. Cell. Biol. 19:1202–1209
  • Lowe, S. W., and Ruley, H. E.. 1993. Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. Genes Dev. 7:535–545
  • Mak, I., Mak, S., and Benchimol, S.. 1988. Expression of the cellular p53 protein in cells transformed by adenovirus 12 and viral DNA fragments. Virology 163:201–204
  • Marcellus, R. C., Teodoro, J. G., Charbonneau, R., Shore, G. C., and Branton, P. E.. 1996. Expression of p53 in Saos-2 osteosarcoma cells induces apoptosis which can be inhibited by Bcl-2 or the adenovirus E1B-55 kDa protein. Cell Growth Differ. 7:1643–1650
  • Martin, M. E., and Berk, A. J.. 1998. Adenovirus E1B 55K represses p53 activation in vitro. J. Virol. 72:3146–3154
  • Martin, M. E., and Berk, A. J.. 1999. Corepressor required for adenovirus E1B 55,000-molecular-weight protein repression of basal transcription. Mol. Cell. Biol. 19:3403–3414
  • Mietz, J. A., Unger, T., Huibregtse, J. M., and Howley, P. M.. 1992. The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J. 11:5013–5020
  • Prives, C.. 1998. Signaling to p53: breaking the MDM2-p53 circuit. Cell 95:5–8
  • Puri, P. L., Sartorelli, V., Yang, X. J., Hamamori, Y., Ogryzko, V. V., Howard, B. H., Kedes, L., Wang, J. Y., Graessmann, A., Nakatani, Y., and Levrero, M.. 1997. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1:35–45
  • Reid, J. L., Bannister, A. J., Zegerman, P., Martinez-Balbas, M. A., and Kouzarides, T.. 1998. E1A directly binds and regulates the P/CAF acetyltransferase. EMBO J. 17:4469–4477
  • Ricciardi, R. P.. 1995. Transformation and tumorigenesis mediated by the adenovirus E1A and E1B oncogenes DNA tumor viruses: oncogenic mechanisms. Barbanti-Brodano, G. et al. 195–225 Plenum Press, New York, N.Y
  • Roulston, A., Marcellus, R. C., and Branton, P. E.. 1999. Viruses and apoptosis. Annu. Rev. Microbiol. 53:577–628
  • Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E.. 1998. DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev. 12:2831–2841
  • Sarnow, P., Ho, Y. S., Williams, J., and Levine, A. J.. 1982. Adenovirus E1B-58kd tumor antigen and SV40 large tumor antigen are physically associated with the same 54 kd cellular protein in transformed cells. Cell 28:387–394
  • Sarnow, P., Sullivan, C. A., and Levine, A. J.. 1982. A monoclonal antibody detecting the adenovirus type 5-E1b-58Kd tumor antigen: characterization of the E1b-58Kd tumor antigen in adenovirus-infected and -transformed cells. Virology 120:510–517
  • Sartorelli, V., Puri, P. L., Hamamori, Y., Ogryzko, V., Chung, G., Nakatani, Y., Wang, J. Y., and Kedes, L.. 1999. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4:725–734
  • Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J., and Howley, P. M.. 1990. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136
  • Schmieg, F. I., and Simmons, D. T.. 1988. Characterization of the in vitro interaction between SV40 T antigen and p53: mapping the p53 binding site. Virology 164:132–140
  • Shieh, S. Y., Ikeda, M., Taya, Y., and Prives, C.. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334
  • Steegenga, W. T., van Laar, T., Riteco, N., Mandarino, A., Shvarts, A., van der Eb, A. J., and Jochemsen, A. G.. 1996. Adenovirus E1A proteins inhibit activation of transcription by p53. Mol. Cell. Biol. 16:2101–2109
  • Steegenga, W. T., Van Laar, T., Shvarts, A., Terleth, C., Van der Eb, A. J., and Jochemsen, A. G.. 1995. Distinct modulation of p53 activity in transcription and cell-cycle regulation by the large (54 kDa) and small (21 kDa) adenovirus E1B proteins. Virology 212:543–554
  • Tan, T. H., Wallis, J., and Levine, A. J.. 1986. Identification of the p53 protein domain involved in formation of the simian virus 40 large T-antigen–p53 protein complex. J. Virol. 59:574–583
  • Teodoro, J. G., and Branton, P. E.. 1997. Regulation of p53-dependent apoptosis, transcriptional repression, and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J. Virol. 71:3620–3627
  • Teodoro, J. G., Shore, G. C., and Branton, P. E.. 1995. Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene 11:467–474
  • Torchia, J., Glass, C., and Rosenfeld, M. G.. 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383
  • van den Elsen, P. J., Houweling, A., and van der Eb, A. J.. 1983. Morphological transformation of human adenoviruses is determined to a large extent by gene products of region E1a. Virology 131:242–246
  • van den Heuvel, S. J., van Laar, T., The, I., and van der Eb, A. J.. 1993. Large E1B proteins of adenovirus types 5 and 12 have different effects on p53 and distinct roles in cell transformation. J. Virol. 67:5226–5234
  • Vassilev, A., Yamauchi, J., Kotani, T., Prives, C., Avantaggiati, M. L., Qin, J., and Nakatani, Y.. 1998. The 400 kDa subunit of the PCAF histone acetylase complex belongs to the ATM superfamily. Mol. Cell 2:869–875
  • Wang, L., Mizzen, C., Ying, C., Candau, R., Barlev, N., Brownell, J., Allis, C. D., and Berger, S. L.. 1997. Histone acetyltransferase activity is conserved between yeast and human GCN5 and is required for complementation of growth and transcriptional activation. Mol. Cell. Biol. 17:519–527
  • Waterman, M. J., Stavridi, E. S., Waterman, J. L., and Halazonetis, T. D.. 1998. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat. Genet. 19:175–178
  • Weissman, B. E., Saxon, P. J., Pasquale, S. R., Jones, G. R., Geiser, A. G., and Stanbridge, E. J.. 1987. Introduction of a normal human chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. Science 236:175–180
  • Werness, B. A., Levine, A. J., and Howley, P. M.. 1990. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science 248:76–79
  • Wienzek, S., Roth, J., and Dobbelstein, M.. 2000. E1B 55-kilodalton oncoproteins of adenovirus types 5 and 12 inactivate and relocalize p53, but not p51 or p73, and cooperate with E4orf6 proteins to destabilize p53. J. Virol. 74:193–202
  • Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324
  • Yew, P. R., and Berk, A. J.. 1992. Inhibition of p53 transactivation required for transformation by adenovirus early 1B protein. Nature 357:82–85
  • Yew, P. R., Kao, C. C., and Berk, A. J.. 1990. Dissection of functional domains in the adenovirus 2 early 1B 55K polypeptide by suppressor-linker insertional mutagenesis. Virology 179:795–805
  • Yew, P. R., Liu, X., and Berk, A. J.. 1994. Adenovirus E1B oncoprotein tethers a transcriptional repression domain to p53. Genes Dev. 8:190–202
  • Zantema, A., Fransen, J. A., Davis-Olivier, A., Ramaekers, F. C., Vooijs, G. P., DeLeys, B., and Van der Eb, A. J.. 1985. Localization of the E1B proteins of adenovirus 5 in transformed cells, as revealed by interaction with monoclonal antibodies. Virology 142:44–58
  • Zantema, A., Schrier, P. I., Davis-Olivier, A., van Laar, T., Vaessen, R. T. M. J., and van der Eb, A. J.. 1985. Adenovirus serotype determines association and localization of the large E1B tumor antigen with cellular tumor antigen p53 in transformed cells. Mol. Cell. Biol. 5:3084–3091

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.