18
Views
81
CrossRef citations to date
0
Altmetric
Cell Growth and Development

MCG10, a Novel p53 Target Gene That Encodes a KH Domain RNA-Binding Protein, Is Capable of Inducing Apoptosis and Cell Cycle Arrest in G2-M

&
Pages 5602-5618 | Received 27 Jan 2000, Accepted 08 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Agarwal, M. L., Taylor, W. R., Chernov, M. V., Chernova, O. B., and Stark, G. R.. 1998. The p53 network. J. Biol. Chem. 273:1–4
  • Almog, N., and Rotter, V.. 1997. Involvement of p53 in cell differentiation and development. Biochim. Biophys. Acta 1333:F1–F27
  • Attardi, L. D., Lowe, S. W., Brugarolas, J., and Jacks, T.. 1996. Transcriptional activation by p53, but not induction of the p21 gene, is essential for oncogene-mediated apoptosis. EMBO J. 15:3693–3701
  • Barlat, I., Maurier, F., Duchesne, M., Guitard, E., Tocque, B., and Schweighoffer, F.. 1997. A role for Sam68 in cell cycle progression antagonized by a spliced variant within the KH domain. J. Biol. Chem. 272:3129–3132
  • Bennett, M., Macdonald, K., Chan, S. W., Luzio, J. P., Simari, R., and Weissberg, P.. 1998. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science 282:290–293
  • Braga, E., Pugacheva, E., Bazov, I., Ermilova, V., Kazubskaya, T., Mazurenko, N., Kisseljov, F., Liu, J., Garkavtseva, R., Zabarovsky, E., and Kisselev, L.. 1999. Comparative allelotyping of the short arm of human chromosome 3 in epithelial tumors of four different types. FEBS Lett. 454:215–219
  • Brugarolas, J., Chandrasekaran, C., Gordon, J. I., Beach, D., Jacks, T., and Hannon, G. J.. 1995. Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377:552–557
  • Bunz, F., Dutriaux, A., Lengauer, C., Waldman, T., Zhou, S., Brown, J. P., Sedivy, J. M., Kinzler, K. W., and Vogelstein, B.. 1998. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282:1497–1501
  • Burd, C. G., and Dreyfuss, G.. 1994. Conserved structures and diversity of functions of RNA-binding proteins. Science 265:615–621
  • Bustelo, X. R., Suen, K. L., Michael, W. M., Dreyfuss, G., and Barbacid, M.. 1995. Association of the vav proto-oncogene product with poly(rC)-specific RNA-binding proteins. Mol. Cell. Biol. 15:1324–1332
  • Carrier, F., Gatignol, A., Hollander, M. C., Jeang, K. T., Fornace, A. J.Jr.. 1994. Induction of RNA-binding proteins in mammalian cells by DNA-damaging agents. Proc. Natl. Acad. Sci. USA 91:1554–1558
  • Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B.. 1999. 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401:616–620
  • Chen, X.. 1999. The p53 family: same response, different signals? Mol. Med. Today 5:387–392
  • Chen, X., Bargonetti, J., and Prives, C.. 1995. p53, through p21 (WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res. 55:4257–4263
  • Chen, X., Ko, L. J., Jayaraman, L., and Prives, C.. 1996. p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells. Genes Dev. 10:2438–2451
  • Chin, L., Artandi, S. E., Shen, Q., Tam, A., Lee, S. L., Gottlieb, G. J., Greider, C. W., and DePinho, R. A.. 1999. p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538
  • Clurman, B., and Groudine, M.. 1997. Tumour-suppressor genes. Killer in search of a motive? Nature 389:122–123
  • Cohen, G. B., Ren, R., and Baltimore, D.. 1995. Modular binding domains in signal transduction proteins. Cell 80:237–248
  • Colgin, L. M., and Reddel, R. R.. 1999. Telomere maintenance mechanisms and cellular immortalization. Curr. Opin. Genet. Dev. 9:97–103 (Erratum, 9:247.)
  • Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P.. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684
  • Di Como, C. J., Gaiddon, C., and Prives, C.. 1999. p73 function is inhibited by tumor-derived p53 mutants in mammalian cells. Mol. Cell. Biol. 19:1438–1449
  • Dietrich, W. F., Radany, E. H., Smith, J. S., Bishop, J. M., Hanahan, D., and Lander, E. S.. 1994. Genome-wide search for loss of heterozygosity in transgenic mouse tumors reveals candidate tumor suppressor genes on chromosomes 9 and 16. Proc. Natl. Acad. Sci. USA 91:9451–9455
  • Dreyfuss, G., Matunis, M. J., Pinol-Roma, S., and Burd, C. G.. 1993. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62:289–321
  • Driouch, K., Briffod, M., Bieche, I., Champeme, M. H., and Lidereau, R.. 1998. Location of several putative genes possibly involved in human breast cancer progression. Cancer Res. 58:2081–2086
  • Druck, T., Kastury, K., Hadaczek, P., Podolski, J., Toloczko, A., Sikorski, A., Ohta, M., LaForgia, S., Lasota, J., McCue, P. et al. 1995. Loss of heterozygosity at the familial RCC t(3;8) locus in most clear cell renal carcinomas. Cancer Res. 55:5348–5353
  • Du, Q., Melnikova, I. N., and Gardner, P. D.. 1998. Differential effects of heterogeneous nuclear ribonucleoprotein K on Sp1- and Sp3-mediated transcriptional activation of a neuronal nicotinic acetylcholine receptor promoter. J. Biol. Chem. 273:19877–19883
  • el-Deiry, W. S.. 1998. Regulation of p53 downstream genes. Semin. Cancer Biol. 8:345–357
  • el-Deiry, W. S., Tokino, T., Velculescu, V. E., Levy, D. B., Parsons, R., Trent, J. M., Lin, D., Mercer, W. E., Kinzler, K. W., and Vogelstein, B.. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825
  • Elkeles, A., Juven-Gershon, T., Israeli, D., Wilder, S., Zalcenstein, A., and Oren, M.. 1999. The c-fos proto-oncogene is a target for transactivation by the p53 tumor suppressor. Mol. Cell. Biol. 19:2594–2600
  • Friedlander, P., Haupt, Y., Prives, C., and Oren, M.. 1996. A mutant p53 that discriminates between p53-responsive genes cannot induce apoptosis. Mol. Cell. Biol. 16:4961–4971
  • Fullwood, P., Marchini, S., Rader, J. S., Martinez, A., Macartney, D., Broggini, M., Morelli, C., Barbanti-Brodano, G., Maher, E. R., and Latif, F.. 1999. Detailed genetic and physical mapping of tumor suppressor loci on chromosome 3p in ovarian cancer. Cancer Res. 59:4662–4667
  • Giaccia, A. J., and Kastan, M. B.. 1998. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12:2973–2983
  • Gossen, M., and Bujard, H.. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89:5547–5551
  • Gottlieb, T. M., and Oren, M.. 1996. p53 in growth control and neoplasia. Biochim. Biophys. Acta 1287:77–102
  • Hermeking, H., Lengauer, C., Polyak, K., He, T.-C., Zhang, L., Thiagalingam, S., Kinzler, K. W., and Vogelstein, B.. 1997. 14-3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol. Cell 1:3–11
  • Hobert, O., Jallal, B., Schlessinger, J., and Ullrich, A.. 1994. Novel signaling pathway suggested by SH3 domain-mediated p95vav/heterogeneous ribonucleoprotein K interaction. J. Biol. Chem. 269:20225–20228
  • Hwang, B. J., Ford, J. M., Hanawalt, P. C., and Chu, G.. 1999. Expression of the p48 xeroderma pigmentosum gene is p53-dependent and is involved in global genomic repair. Proc. Natl. Acad. Sci. USA 96:424–428
  • Imreh, S., Kost-Alimova, M., Kholodnyuk, I., Yang, Y., Szeles, A., Kiss, H., Liu, Y., Foster, K., Zabarovsky, E., Stanbridge, E., and Klein, G.. 1997. Differential elimination of 3p and retention of 3q segments in human/mouse microcell hybrids during tumor growth. Genes Chromosomes Cancer 20:224–233
  • Israeli, D., Tessler, E., Haupt, Y., Elkeles, A., Wilder, S., Amson, R., Telerman, A., and Oren, M.. 1997. A novel p53-inducible gene, PAG608, encodes a nuclear zinc finger protein whose overexpression promotes apoptosis. EMBO J. 16:4384–4392
  • Jackman, J., Alamo, I.Jr., Fornace, A. J.Jr.. 1994. Genotoxic stress confers preferential and coordinate messenger RNA stability on the five gadd genes. Cancer Res. 54:5656–5662
  • Johansen, F. E., and Prywes, R.. 1994. Two pathways for serum regulation of the c-fos serum response element require specific sequence elements and a minimal domain of serum response factor. Mol. Cell. Biol. 14:5920–5928
  • Kastan, M. B., Zhan, Q., el-Deiry, W. S., Carrier, F., Jacks, T., Walsh, W. V., Plunkett, B. S., Vogelstein, B., Fornace, A. J.Jr.. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597
  • Kern, S. E., Kinzler, K. W., Bruskin, A., Jarosz, D., Friedman, P., Prives, C., and Vogelstein, B.. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711
  • Kholodnyuk, I., Kost-Alimova, M., Kashuba, V., Gizatulin, R., Szeles, A., Stanbridge, E. J., Zabarovsky, E. R., Klein, G., and Imreh, S.. 1997. A 3p21.3 region is preferentially eliminated from human chromosome 3/mouse microcell hybrids during tumor growth in SCID mice. Genes Chromosomes Cancer 18:200–211
  • Kiledjian, M., Wang, X., and Liebhaber, S. A.. 1995. Identification of two KH domain proteins in the alpha-globin mRNP stability complex. EMBO J. 14:4357–4364
  • Ko, L. J., and Prives, C.. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072
  • Ko, L. J., Shieh, S. Y., Chen, X., Jayaraman, L., Tamai, K., Taya, Y., Prives, C., and Pan, Z. Q.. 1997. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol. Cell. Biol. 17:7220–7229
  • Krecic, A. M., and Swanson, M. S.. 1999. hnRNP complexes: composition, structure, and function. Curr. Opin. Cell Biol. 11:363–371
  • Kusumoto, M., Ogawa, T., Mizumoto, K., Ueno, H., Niiyama, H., Sato, N., Nakamura, M., and Tanaka, M.. 1999. Adenovirus-mediated p53 gene transduction inhibits telomerase activity independent of its effects on cell cycle arrest and apoptosis in human pancreatic cancer cells. Clin. Cancer Res. 5:2140–2147
  • Lee, C. W., and La Thangue, N. B.. 1999. Promoter specificity and stability control of the p53-related protein p73. Oncogene 18:4171–4181
  • Lengauer, C., Kinzler, K. W., and Vogelstein, B.. 1998. Genetic instabilities in human cancers. Nature 396:643–649
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Lin, Q., Taylor, S. J., and Shalloway, D.. 1997. Specificity and determinants of Sam68 RNA binding: implications for the biological function of K homology domains. J. Biol. Chem. 272:27274–27280
  • Lingner, J., and Cech, T. R.. 1998. Telomerase and chromosome end maintenance. Curr. Opin. Genet. Dev. 8:226–232
  • Loughran, O., Clark, L. J., Bond, J., Baker, A., Berry, I. J., Edington, K. G., Ly, I. S., Simmons, R., Haw, R., Black, D. M., Newbold, R. F., and Parkinson, E. K.. 1997. Evidence for the inactivation of multiple replicative lifespan genes in immortal human squamous cell carcinoma keratinocytes. Oncogene 14:1955–1964
  • Mashimo, T., Watabe, M., Hirota, S., Hosobe, S., Miura, K., Tegtmeyer, P. J., Rinker-Shaeffer, C. W., and Watabe, K.. 1998. The expression of the KAI1 gene, a tumor metastasis suppressor, is directly activated by p53. Proc. Natl. Acad. Sci. USA 95:11307–11311
  • Matsuzawa, S., Takayama, S., Froesch, B. A., Zapata, J. M., and Reed, J. C.. 1998. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 17:2736–2747
  • Mehle, C., Lindblom, A., Ljungberg, B., Stenling, R., and Roos, G.. 1998. Loss of heterozygosity at chromosome 3p correlates with telomerase activity in renal cell carcinoma. Int. J. Oncol. 13:289–295
  • Michelotti, E. F., Michelotti, G. A., Aronsohn, A. I., and Levens, D.. 1996. Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol. Cell. Biol. 16:2350–2360
  • Michelotti, G. A., Michelotti, E. F., Pullner, A., Duncan, R. C., Eick, D., and Levens, D.. 1996. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol. Cell. Biol. 16:2656–2669
  • Mitelman, F., Mertens, F., and Johansson, B.. 1997. A breakpoint map of recurrent chromosomal rearrangements in human neoplasia. Nat. Genet. 15 Spec. No. 417–474
  • Miyashita, T., Krajewski, S., Krajewska, M., Wang, H. G., Lin, H. K., Liebermann, D. A., Hoffman, B., and Reed, J. C.. 1994. Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene 9:1799–1805
  • Mori, T., Yanagisawa, A., Kato, Y., Miura, K., Nishihira, T., Mori, S., and Nakamura, Y.. 1994. Accumulation of genetic alterations during esophageal carcinogenesis. Hum. Mol. Genet. 3:1969–1971
  • Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K., Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W., Oren, M., and Krammer, P. H.. 1998. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 188:2033–2045
  • Munger, K., Phelps, W. C., Bubb, V., Howley, P. M., and Schlegel, R.. 1989. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J. Virol. 63:4417–4421
  • Musco, G., Stier, G., Joseph, C., Castiglione Morelli, M. A., Nilges, M., Gibson, T. J., and Pastore, A.. 1996. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell 85:237–245
  • Nagata, S.. 2000. Apoptotic DNA fragmentation. Exp. Cell Res. 256:12–18
  • Nelson, W. G., and Kastan, M. B.. 1994. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol. Cell. Biol. 14:1815–1823
  • Niculescu, A. B.3rd, Chen, X., Smeets, M., Hengst, L., Prives, C., and Reed, S. I.. 1998. Effects of p21 (Cip1/Waf1) at both the G1/S and the G2/M cell cycle transitions: pRb is a critical determinant in blocking DNA replication and in preventing endoreduplication. Mol. Cell. Biol. 18:629–643
  • Nikiforova, M. N., Nikiforov, Y. E., Biddinger, P., Gnepp, D. R., Grosembacher, L. A., Wajchenberg, B. L., Fagin, J. A., and Cohen, R. M.. 1999. Frequent loss of heterozygosity at chromosome 3p14.2-3p21 in human pancreatic islet cell tumours. Clin. Endocrinol. (Oxford) 51:27–33
  • Oberhammer, F., Wilson, J. W., Dive, C., Morris, I. D., Hickman, J. A., Wakeling, A. E., Walker, P. R., and Sikorska, M.. 1993. Apoptotic death in epithelial cells: cleavage of DNA to 300 and/or 50 kb fragments prior to or in the absence of internucleosomal fragmentation. EMBO J. 12:3679–3684
  • Ogasawara, S., Maesawa, C., Tamura, G., and Satodate, R.. 1995. Frequent microsatellite alterations on chromosome 3p in esophageal squamous cell carcinoma. Cancer Res. 55:891–894
  • Ostareck, D. H., Ostareck-Lederer, A., Wilm, M., Thiele, B. J., Mann, M., and Hentze, M. W.. 1997. mRNA silencing in erythroid differentiation: hnRNP K and hnRNP E1 regulate 15-lipoxygenase translation from the 3′ end. Cell 89:597–606
  • Ostareck-Lederer, A., Ostareck, D. H., and Hentze, M. W.. 1998. Cytoplasmic regulatory functions of the KH-domain proteins hnRNPs K and E1/E2. Trends Biochem. Sci. 23:409–411
  • Partridge, M., Emilion, G., and Langdon, J. D.. 1996. LOH at 3p correlates with a poor survival in oral squamous cell carcinoma. Br. J. Cancer 73:366–371
  • Pietenpol, J. A., Tokino, T., Thiagalingam, S., el-Deiry, W. S., Kinzler, K. W., and Vogelstein, B.. 1994. Sequence-specific transcriptional activation is essential for growth suppression by p53. Proc. Natl. Acad. Sci. USA 91:1998–2002
  • Pinol-Roma, S., Choi, Y. D., Matunis, M. J., and Dreyfuss, G.. 1988. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2:215–227 (Erratum, 2:190.)
  • Roperch, J. P., Lethrone, F., Prieur, S., Piouffre, L., Israeli, D., Tuynder, M., Nemani, M., Pasturaud, P., Gendron, M. C., Dausset, J., Oren, M., Amson, R. B., and Telerman, A.. 1999. SIAH-1 promotes apoptosis and tumor suppression through a network involving the regulation of protein folding, unfolding, and trafficking: identification of common effectors with p53 and p21 (Waf1). Proc. Natl. Acad. Sci. USA 96:8070–8073
  • Rouault, J. P., Falette, N., Guehenneux, F., Guillot, C., Rimokh, R., Wang, Q., Berthet, C., Moyret-Lalle, C., Savatier, P., Pain, B., Shaw, P., Berger, R., Samarut, J., Magaud, J. P., Ozturk, M., Samarut, C., and Puisieux, A.. 1996. Identification of BTG2, an antiproliferative p53-dependent component of the DNA damage cellular response pathway. Nat. Genet. 14:482–486
  • Sakahira, H., Enari, M., Ohsawa, Y., Uchiyama, Y., and Nagata, S.. 1999. Apoptotic nuclear morphological change without DNA fragmentation. Curr. Biol. 9:543–546
  • Sheikh, M. S., Carrier, F., Papathanasiou, M. A., Hollander, M. C., Zhan, Q., Yu, K., Fornace, A. J.Jr.. 1997. Identification of several human homologs of hamster DNA damage-inducible transcripts: cloning and characterization of a novel UV-inducible cDNA that codes for a putative RNA-binding protein. J. Biol. Chem. 272:26720–26726
  • Siomi, H., and Dreyfuss, G.. 1997. RNA-binding proteins as regulators of gene expression. Curr. Opin. Genet. Dev. 7:345–353
  • Siomi, H., Siomi, M. C., Nussbaum, R. L., and Dreyfuss, G.. 1993. The protein product of the fragile X gene, FMR1, has characteristics of an RNA-binding protein. Cell 74:291–298
  • Swanson, M. S., and Dreyfuss, G.. 1988. Classification and purification of proteins of heterogeneous nuclear ribonucleoprotein particles by RNA-binding specificities. Mol. Cell. Biol. 8:2237–2241
  • Taylor, S. J., and Shalloway, D.. 1994. An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis. Nature 368:867–871
  • Todd, S., Franklin, W. A., Varella-Garcia, M., Kennedy, T., Hilliker, C. E.Jr., Hahner, L., Anderson, M., Wiest, J. S., Drabkin, H. A., and Gemmill, R. M.. 1997. Homozygous deletions of human chromosome 3p in lung tumors. Cancer Res. 57:1344–1352
  • Tomonaga, T., Michelotti, G. A., Libutti, D., Uy, A., Sauer, B., and Levens, D.. 1998. Unrestraining genetic processes with a protein-DNA hinge. Mol. Cell 1:759–764
  • Utrera, R., Collavin, L., Lazarevic, D., Delia, D., and Schneider, C.. 1998. A novel p53-inducible gene coding for a microtubule-localized protein with G2-phase-specific expression. EMBO J. 17:5015–5025
  • Van Seuningen, I., Ostrowski, J., Bustelo, X. R., Sleath, P. R., and Bomsztyk, K.. 1995. The K protein domain that recruits the interleukin 1-responsive K protein kinase lies adjacent to a cluster of c-Src and Vav SH3-binding sites: implications that K protein acts as a docking platform. J. Biol. Chem. 270:26976–26985
  • Varmeh-Ziaie, S., Okan, I., Wang, Y., Magnusson, K. P., Warthoe, P., Strauss, M., and Wiman, K. G.. 1997. Wig-1, a new p53-induced gene encoding a zinc finger protein. Oncogene 15:2699–2704
  • Venot, C., Maratrat, M., Dureuil, C., Conseiller, E., Bracco, L., and Debussche, L.. 1998. The requirement for the p53 proline-rich functional domain for mediation of apoptosis is correlated with specific PIG3 gene transactivation and with transcriptional repression. EMBO J. 17:4668–4679
  • Venot, C., Maratrat, M., Sierra, V., Conseiller, E., and Debussche, L.. 1999. Definition of a p53 transactivation function-deficient mutant and characterization of two independent p53 transactivation subdomains. Oncogene 18:2405–2410
  • Verkerk, A. J., deVries, B. B., Niermeijer, M. F., Fu, Y. H., Nelson, D. L., Warren, S. T., Majoor-Krakauer, D. F., Halley, D. J., and Oostra, B. A.. 1992. Intragenic probe used for diagnostics in fragile X families. Am. J. Med. Genet. 43:192–196
  • Waldman, T., Lengauer, C., Kinzler, K. W., and Vogelstein, B.. 1996. Uncoupling of S phase and mitosis induced by anticancer agents in cells lacking p21. Nature 381:713–716
  • Wang, X. W., Zhan, Q., Coursen, J. D., Khan, M. A., Kontny, H. U., Yu, L., Hollander, M. C., O'Connor, P. M., Fornace, A. J.Jr., and Harris, C. C.. 1999. GADD45 induction of a G2/M cell cycle checkpoint. Proc. Natl. Acad. Sci. USA 96:3706–3711
  • Warren, S. T., and Nelson, D. L.. 1994. Advances in molecular analysis of fragile X syndrome. JAMA 271:536–542
  • Weiss, I. M., and Liebhaber, S. A.. 1994. Erythroid cell-specific determinants of alpha-globin mRNA stability. Mol. Cell. Biol. 14:8123–8132
  • Weng, Z., Thomas, S. M., Rickles, R. J., Taylor, J. A., Brauer, A. W., Seidel-Dugan, C., Michael, W. M., Dreyfuss, G., and Brugge, J. S.. 1994. Identification of Src, Fyn, and Lyn SH3-binding proteins: implications for a function of SH3 domains. Mol. Cell. Biol. 14:4509–4521
  • Wieland, I., Ammermuller, T., Bohm, M., Totzeck, B., and Rajewsky, M. F.. 1996. Microsatellite instability and loss of heterozygosity at the hMLH1 locus on chromosome 3p21 occur in a subset of nonsmall cell lung carcinomas. Oncol. Res. 8:1–5
  • Wistuba, I. I., Behrens, C., Milchgrub, S., Bryant, D., Hung, J., Minna, J. D., and Gazdar, A. F.. 1999. Sequential molecular abnormalities are involved in the multistage development of squamous cell lung carcinoma. Oncogene 18:643–650
  • Wistuba, I. I., Montellano, F. D., Milchgrub, S., Virmani, A. K., Behrens, C., Chen, H., Ahmadian, M., Nowak, J. A., Muller, C., Minna, J. D., and Gazdar, A. F.. 1997. Deletions of chromosome 3p are frequent and early events in the pathogenesis of uterine cervical carcinoma. Cancer Res. 57:3154–3158
  • Wolf, B. B., Schuler, M., Echeverri, F., and Green, D. R.. 1999. Caspase-3 is the primary activator of apoptotic DNA fragmentation via DNA fragmentation factor-45/inhibitor of caspase-activated DNase inactivation. J. Biol. Chem. 274:30651–30656
  • Wu, G. S., Burns, T. F., McDonald, E. R.3rd, Jiang, W., Meng, R., Krantz, I. D., Kao, G., Gan, D. D., Zhou, J. Y., Muschel, R., Hamilton, S. R., Spinner, N. B., Markowitz, S., Wu, G., and El-Deiry, W. S.. 1997. KILLER/DR5 is a DNA damage-inducible p53-regulated death receptor gene. Nat. Genet. 17:141–143
  • Wu, G. S., Saftig, P., Peters, C., and El-Deiry, W. S.. 1998. Potential role for cathepsin D in p53-dependent tumor suppression and chemosensitivity. Oncogene 16:2177–2183
  • Yin, Y., Terauchi, Y., Solomon, G. G., Aizawa, S., Rangarajan, P. N., Yazaki, Y., Kadowaki, T., and Barrett, J. C.. 1998. Involvement of p85 in p53-dependent apoptotic response to oxidative stress. Nature 391:707–710
  • Zhan, Q., Bae, I., Kastan, M. B., Fornace, A. J.Jr.. 1994. The p53-dependent gamma-ray response of GADD45. Cancer Res. 54:2755–2760
  • Zhu, J., Jiang, J., Zhou, W., and Chen, X.. 1998. The potential tumor suppressor p73 differentially regulates cellular p53 target genes. Cancer Res. 58:5061–5065
  • Zhu, J., Jiang, J., Zhou, W., Zhu, K., and Chen, X.. 1999. Differential regulation of cellular target genes by p53 devoid of the PXXP motifs with impaired apoptotic activity. Oncogene 18:2149–2155
  • Zhu, J., Zhou, W., Jiang, J., and Chen, X.. 1998. Identification of a novel p53 functional domain that is necessary for mediating apoptosis. J. Biol. Chem. 273:13030–13036
  • Zhu, K. W. J., Zhu J., Jiang J., Shou J., and Chen X.. 1999. p53 induces TAP1 and enhances the transport of MHC class I peptides. Oncogene 18:7740–7747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.