23
Views
120
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Identification of the Cytolinker Plectin as a Major Early In Vivo Substrate for Caspase 8 during CD95- and Tumor Necrosis Factor Receptor-Mediated Apoptosis

, , , , , , , & show all
Pages 5665-5679 | Received 29 Nov 1999, Accepted 12 Apr 2000, Published online: 28 Mar 2023

REFERENCES

  • Andrä, K., Nikolic, B., Stöcher, M., Drenckhahn, D., and Wiche, G.. 1998. Not just scaffolding: plectin regulates actin dynamics in cultured cells. Genes Dev. 12:3442–3451
  • Andrä, K., Lassmann, H., Bittner, R., Shorny, S., Fassler, R., Propst, F., and Wiche, G.. 1997. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 23:3143–3156
  • Boesen-de Cock, J. G., Tepper, A. D., de Vries, E., van Blitterswijk, W. J., and Borst, J.. 1999. Common regulation of apoptosis signaling induced by CD95 and the DNA-damaging stimuli etoposide and gamma-radiation downstream from caspase-8 activation. J. Biol. Chem. 274:14255–14261
  • Boldin, M. P., Goncharov, T. M., Goltsev, Y. V., and Wallach, D.. 1996. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815
  • Boldin, M. P., Varfolomeev, E. E., Pancer, Z., Mett, I. L., Camonis, J. H., and Wallach, D.. 1995. A novel protein that interacts with the death domain of Fas/APO1 contains a sequence motif related to the death domain. J. Biol. Chem. 270:7795–7798
  • Caponigro, F., French, R. C., and Kaye, S. B.. 1997. Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs 8:26–33
  • Caulín, C., Salvesen, G. S., and Oshima, R. G.. 1997. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J. Cell Biol. 138:1379–1394
  • Chinnaiyan, A. M., O'Rourke, K., Tewari, M., and Dixit, V. M.. 1995. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512
  • Fernandes-Alnemri, T., Armstrong, R. C., Krebs, J., Srinivasula, S. M., Wang, L., Bullrich, F., Fritz, L. C., Trapani, J. A., Tomaselli, K. J., Litwack, G., and Alnemri, E. S.. 1996. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc. Natl. Acad. Sci. USA 93:7464–7469
  • Fogel, M., Lifschitz-Mercer, B., Moll, R., Kushnir, H., Jacob, N., Waldherr, R., Livoff, A., Franke, W. W., and Czernobislky, B.. 1991. Heterogeneity of intermediate filament expression in human testicular seminomas. Differentiation 46:143–145
  • Foisner, R., Bohn W., Mannweiler K., and Wiche G.. Distribution and ultrastructure of plectin arrays on subclones of rat glioma C6 cells deferring in intermediate filament protein (vimentin) expression. J. Struct. Biol. 115:304–317.
  • Foisner, R., Leichtfried, R. E., Herrmann, H., Small, J. V., Laurson, D., and Wiche, G.. 1988. Cytoskeleton-associated plectin in situ localization, in vitro reconstitution, and binding to immobilized intermediate filament proteins. J. Cell Biol. 106:723–733
  • Fuchs, E., and Yang, Y.. 1999. Crossroads on cytoskeletal highways. Cell 98:547–550
  • Fuchs, E., and Cleveland, D. W.. 1998. A structural scaffolding of intermediate filaments in health and disease. Science 279:514–519
  • Garcia-Calvo, M., Peterson, E. P., Leiting, B., Ruel, R., Nicholson, D. W., and Thornberry, N. A.. 1998. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J. Biol. Chem. 273:32608–32613
  • Geng, Y. J., Azuma, T., Tang, J. X., Hartwig, J. H., Muszynski, M., Wu, Q., Libby, P., and Kwiatkowski, D. J.. 1998. Caspase-3-induced gelsolin fragmentation contributes to actin cytoskeletal collapse, nucleolysis, and apoptosis of vascular smooth muscle cells exposed to proinflammatory cytokines. Eur. J. Cell Biol. 77:294–302
  • Greidinger, E. L., Miller, D. K., Yamin, T. T., Casciola-Rosen, L., and Rosen, A.. 1996. Sequential activation of three distinct ICE-like activities in Fas-ligated Jurkat cells. FEBS Lett. 390:299–303
  • Gross, A., Yin, X.-M., Eang, K., Wei, M. C., Jockel, J., Milliman, C., Erdjument-Bromage, H., Tempst, P., and Korsmeyer, S. J.. 1999. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274:1156–1163
  • Herrmann, H., Hofmann, I., and Franke, W. W.. 1992. Identification of a nonapeptide motif in the vimentin head domain involved in intermediate filament assembly. J. Mol. Biol. 223:637–650
  • Herrmann, H., and Wiche, G.. 1987. Plectin and IFAP-300K are homologous proteins binding to microtubule-associated proteins 1 and 2 and to the 240-kilodalton subunit of spectrin. J. Biol. Chem. 262:1320–1325
  • Herrmann, H., and Wiche, G.. 1983. Specific in situ phosphorylation of plectin in detergent-resistant cytoskeletons from cultured Chinese hamster ovary cells. J. Biol. Chem. 23:14610–14618
  • Jänicke, R. U., Ng, P., Sprengart, M. L., and Porter, A. G.. 1998. Caspase-3 is required for alpha-fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis. J. Biol. Chem. 273:15540–15545
  • Jänicke, R. U., Sprengart, M. L., Wati, M. R., and Porter, A. G.. 1998. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273:9357–9360
  • Jonkman, M. F.. 1999. Hereditary skin diseases of hemidesmosomes. J. Dermatol. Sci. 20:103–121
  • Juo, P., Kuo, C. J., Yuan, J., and Blenis, J.. 1998. Essential requirement for caspase-8/FLICE in the initiation of the Fas-induced apoptotic cascade. Curr. Biol. 8:1001–1008
  • Kaufmann, S. H.. 1998. Cell death induced by topoisomerase-targeted drugs: more questions than answers. Biochim. Biophys. Acta 1400:195–211
  • Kennedy, N. J., Kataoka, T., Tschopp, J., and Budd, R. C.. 1999. Caspase activation is required for T cell proliferation. J. Exp. Med. 190:1891–1896
  • Kothakota, S., Azuma, T., Reinhard, C., Klippel, A., Tang, J., Chu, K., McGarry, T. J., Kirschner, M. W., Koths, K., Kwiatkowski, D. J., and Williams, L. T.. 1997. Caspase-3-generated fragment of gelsolin: effector of morphological change in apoptosis. Science 278:294–298
  • Ku, N.-O., Liao, J., and Omary, M. B.. 1997. Apoptosis generates stable fragments of human type I keratins. J. Biol. Chem. 272:33197–33203
  • Li, H., Zhu, H., Xu, C. J., and Yuan, J.. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501
  • Lin, Y., Devin, A., Rodriguez, Y., and Liu, Z.. 1999. Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13:2514–2526
  • Liu, C.-G., Maercker, C., Castanon, M. J., Hauptmann, R., and Wiche, G.. 1996. Human plectin: organization of the gene, sequence analysis, and chromosome localization (8q24). Proc. Natl. Acad. Sci. USA 93:4278–4283
  • Liu, X., Li, P., Widlak, P., Zou, H., Luo, X., Garrard, W. T., and Wang, X.. 1998. The 40-kDa subunit of DNA fragmentation factor induces DNA fragmentation and chromatin condensation during apoptosis. Proc. Natl. Acad. Sci. USA 95:8461–8466
  • Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X.. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490
  • Macer, D. R., and Koch, G. L.. 1988. Identification of a set of calcium-binding proteins in reticuloplasm, the luminal content of the endoplasmic reticulum. J. Cell Sci. 91:61–70
  • Mancini, M., Nicholson, D. W., Roy, S., Thornberry, N. A., Peterson, E. P., Casciola-Rosen, L. A., and Rosen, A.. 1998. The caspase-3 precursor has a cytosolic and mitochondrial distribution: implications for apoptotic signaling. J. Cell Biol. 140:1485–1495
  • McLean, W. H., Pulkkinen, L., Smith, F. J., Rugg, E. L., Lane, E. B., Bullrich, F., Burgeson, R. E., Amano, S., Hudson, D. L., Owaribe, K., McGrath, J. A., McMillan, J. R., Eady, R. A., Leigh, I. M., Christiano, A. M., and Uitto, J.. 1997. Loss of plectin causes epidermolysis bullosa with muscular dystrophy: cDNA cloning and genomic organization. Genes Dev. 10:1724–1735
  • McKinney, R. M., Spillane, J. T., and Pearce, G. W.. 1966. A simple method for determining the labeling efficiency of fluorescein isothiocyanate products. Anal. Biochem. 14:421–428
  • Medema, J. P., Scaffidi, C., Kischkel, F. C., Shevchenko, A., Mann, M., Krammer, P. H., and Peter, M. E.. 1997. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16:2794–2804
  • Medema, J. P., Scaffidi, C., Krammer, P. H., and Peter, M. E.. 1998. Bcl-xL acts downstream of caspase-8 activation by the CD95 death-inducing signaling complex. J. Biol. Chem. 273:3388–3393
  • Mertens, C., Kuhn, C., and Franke, W. W.. 1996. Plakophilins 2a and 2b: constitutive proteins of dual location in the karyoplasm and the desmosomal plaque. J. Cell Biol. 135:1009–1025
  • Moll, R., Francke, W., and Schiller, D. L.. 1982. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24
  • Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O'Rourke, K., Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and Dixit, V. M.. 1996. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 85:817–827
  • Ng, F. W., Nguyen, M., Kwan, T., Branton, P. E., Nicholson, D. W., Cromlish, J. A., and Shore, G. C.. 1997. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell Biol. 139:327–338
  • Nicholson, D. W., and Thornberry, N. A.. 1997. Caspases: killer proteases. Trends Biochem. Sci. 22:229–306
  • Nikolic, B., MacNulty, E., Mir, B., and Wiche, G.. 1996. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J. Cell Biol. 134:1455–1467
  • Perez, D., and White, E.. 1998. E1B 19K inhibits Fas-mediated apoptosis through FADD-dependent sequestration of FLICE. J. Cell Biol. 141:1255–1266
  • Peter, M. E., Scaffidi, C., Medema, J. P., Kischkel, F. C., and Krammer, P. H.. The death receptors p. 25–63. In Kumar, S. Apoptosis: biology and mechanisms, vol. 23. Results and problems in cell differentiation. Springer-Verlag, Heidelberg, Germany
  • Peter, M. E., Hellbardt, S., Schwartz-Albiez, R., Westendorp, M. O., Moldenhauer, G., Grell, M., and Krammer, P. H.. 1995. 1998. Cell surface sialylation plays a role in modulating sensitivity towards APO-1-mediated apoptotic cell death. Cell Death Differ. 2:163–171
  • Prasad, S. C., Thraves, P. J., Kuettel, M. R., Srinivasarao, G. Y., Dritschilo, A., and Soldatenkov, V. A.. 1998. Apoptosis-associated proteolysis of vimentin in human prostate epithelial tumor cells. Biochem. Biophys. Res. Commun. 249:332–338
  • Ruhrberg, C., and Watt, F. M.. 1997. The plakin family: versatile organizers of cytoskeletal architecture. Curr. Opin. Genet. 3:392–397
  • Ruhrberg, C., Hajibagheri, M. A. N., Parry, D. A. D., and Watt, F. M.. 1997. Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J. Cell Biol. 139:1835–1849
  • Sakahira, H., Enari, M., and Nagata, S.. 1998. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99
  • Samejima, K., Svingen, P. A., Basi, G. S., Kottke, T., Mesner, P. W. Jr., Stewart, L., Durrieu, F., Poirier, G. G., Alnemri, E. S., Champoux, J. J., Kaufmann, S. H., and Earnshaw, W. C.. 1999. Caspase-mediated cleavage of DNA topoisomerase I at unconventional sites during apoptosis. J. Biol. Chem. 274:4335–4340
  • Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H., and Peter, M. E.. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687
  • Scaffidi, C., Medema, J. P., Krammer, P. H., and Peter, M. E.. 1997. FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase-8/b. J. Biol. Chem. 272:26953–26958
  • Smith, F. J., Eady, R. A., Leigh, I. M., McMillan, J. R., Rugg, E. L., Kelsell, D. P., Bryant, S. P., Spurr, N. K., Geddes, J. F., Kirtschig, G., Milana, G., de Bono, A. G., Owaribe, K., Wiche, G., Pulkkinen, L., Uitto, J., McLean, W. H., and Lane, E. B.. 1996. Plectin deficiency results in muscular dystrophy with epidermolysis bullosa. Nat. Genet. 13:450–457
  • Srinivasan, A., Li, F., Wong, A., Kodandapani, L., Smidt, R.Jr., Krebs, J. F., Fritz, L. C., Wu, J. C., and Tomaselli, K. J.. 1998. Bcl-xL functions downstream of caspase-8 to inhibit Fas- and tumor necrosis factor receptor 1-induced apoptosis of MCF7 breast carcinoma cells. J. Biol. Chem. 273:4523–4529
  • Stegh, A. H., Schickling, O., Ehret, A., Scaffidi, C., Peterhänsel, C., Hoffmann, T. G., Grummt, I., Krammer, P. H., and Peter, M. E.. 1998. DEDD, a novel death effector containing apoptosis-inducing protein targeted to nucleoli. EMBO J. 17:5974–5986
  • Steller, H.. 1985. Mechanisms and genes of cellular suicide. Science 267:1445–1449
  • Stennicke, H. R., Jürgensmeier, J. M., Shin, H., Deveraux, Q., Wolf, B. B., Yang, X., Zhou, Q., Ellerby, H. M., Ellerby, L. M., Bredesen, D., Green, D. R., Reed, J. C., Froelich, C. J., and Salvesen, G. S.. 1998. Procaspase-3 is a major physiologic target of caspase-8. J. Biol. Chem. 273:27084–27090
  • Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Brenner, C., Larochette, N., Prevost, M. C., Alzari, P. M., and Kroemer, G.. 1999. Mitochondrial release of caspase-2 and -9 during the apoptotic process. J. Exp. Med. 189:381–393
  • Svitkina, T. M., Verkhovsky, A., and Borisy, G. G.. 1996. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J. Cell Biol. 4:991–1007
  • Tan, X., and Wang, J. Y. J.. 1998. The caspase-Rb connection in cell death. Trends Cell Biol. 8:116–120
  • Tang, D., and Kidd, V. J.. 1998. Cleavage of DFF-45/ICAD by multiple caspases is essential for its function during apoptosis. J. Biol. Chem. 273:28549–28552
  • Thornberry, N. A., Rano, T. A., Peterson, E. P., Rasper, D. M., Timkey, T., Garcia-Calvo, M., Houtzager, V. M., Nordstrom, P. A., Roy, S., Vaillancourt, J. P., Chapman, K. T., and Nicholson, D. W.. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272:17907–17911
  • Vander Heiden, M. G., Chandel, N. S., Williamson, E. K., Schumacker, P. T., and Thompson, C. B.. 1998. Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637
  • Varfolomeev, E. E., Schuchmann, M., Luria, V., Chiannilkulchai, N., Beckmann, J. S., Mett, I. L., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O., Lapidot, T., Soffer, D., Sobe, T., Avraham, K. B., Goncharov, T., Holtmann, H., Lonai, P., and Wallach, D.. 1998. Targeted disruption of the mouse caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9:267–276
  • Watanabe, Y., and Akaike, T.. 1999. Possible involvement of caspase-like family in maintenance of cytoskeleton integrity. J. Cell Physiol. 179:45–51
  • White, E.. 1996. Life, death, and the pursuit of apoptosis. Genes Dev. 10:1–15
  • Wiche, G.. 1998. Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 111:2477–2486
  • Wiche, G., and Baker, M. A.. 1982. Cytoplasmic network arrays demonstrated by immunolocalization using antibodies to high mol wt protein present in cytoskeletal preparations from cultured cells. Exp. Cell Res. 138:15–29
  • Wiche, G., Becker, B., Luber, K., Weitzer, G., Castanon, M. J., Hauptmann, R., Stratowa, C., and Stewart, M.. 1991. Cloning and sequencing of rat plectin indicates a 466-kD polypeptide chain with a three-domain structure based on a central alpha-helical coiled coil. J. Cell Biol. 114:83–99
  • Zhang, H., Xu, Q., Krajewski, S., Krajewska, M., Xie, Z., Fuess, S., Kitada, S., Godzik, A., Pawlowski, K., and Reed, J.. 2000. BAR: a novel apoptosis regulator at the intersection of caspases and Bcl-2 family proteins. Proc. Natl. Acad. Sci. USA 97:2597–2602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.