22
Views
49
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Histone-Histone Interactions and Centromere Function

, , , &
Pages 5700-5711 | Received 22 Feb 2000, Accepted 26 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Adams, A., Gottschling, D. E., Kaiser, C., and Stearns, T.. 1998. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring HarborNew York, N.Y.
  • Arents, G., Burlingame, R. W., Wang, B. C., Love, W. E., and Moudrianakis, E. N.. 1991. The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl. Acad. Sci. USA 88:10148–10152
  • Arents, G., and Moudrianakis, E. N.. 1993. Topography of the histone octamer surface: repeating structural motifs utilized in the docking of nucleosomal DNA. Proc. Natl. Acad. Sci. USA 90:10489–10493
  • Baker, R. E., Harris, K., and Zhang, K.. 1998. Mutations synthetically lethal with cep1 target S. cerevisiae kinetochore components. Genetics 149:73–85
  • Basrai, M. A., Kingsbury, J., Koshland, D., Spencer, F., and Hieter, P.. 1996. Faithful chromosome transmission requires Spt4p, a putative regulator of chromatin structure in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2838–2847
  • Biggins, S., and Murray, A. W.. 1998. Sister chromatid cohesion in mitosis. Curr. Opin. Cell Biol. 10:769–775
  • Bloom, K. S., and Carbon, J.. 1982. Yeast centromere DNA is in a unique and highly ordered structure in chromosomes and small circular minichromosomes. Cell 29:305–317
  • Boeke, J. D., Trueheart, J., Natsoulis, B., and Fink, G. R.. 1987. 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154:164–175
  • Bortvin, A., and Winston, F.. 1996. Evidence that Spt6p controls chromatin structure by a direct interaction with histones. Science 272:1473–1476
  • Brent, R., and Ptashne, M.. 1984. A bacterial repressor protein or a yeast transcriptional terminator can block upstream activation of a yeast gene. Nature 312:612–615
  • Buchwitz, B. J., Ahmad, K., Moore, L. L., Roth, M. B., and Henikoff, S.. 1999. A histone-H3-like protein in C. elegans. Nature 401:547–548
  • Clarke, L.. 1998. Centromeres: proteins, protein complexes, and repeated domains at centromeres of simple eukaryotes. Curr. Opin. Genet. Dev. 8:212–218
  • Craig, J. M., Earnshaw, W. C., and Vagnarelli, P.. 1999. Mammalian centromeres: DNA sequence, protein composition, and role in cell cycle progression. Exp. Cell Res. 246:249–262
  • Cross, S. L., and Smith, M. M.. 1988. Comparison of the structure and cell cycle expression of mRNAs encoded by two histone H3-H4 loci in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:945–954
  • Doheny, K. F., Sorger, P. K., Hyman, A. A., Tugendreich, S., Spencer, F., and Hieter, P.. 1993. Identification of essential components of the S. cerevisiae kinetochore. Cell 73:761–774
  • Espelin, C. W., Kaplan, K. B., and Sorger, P. K.. 1997. Probing the architecture of a simple kinetochore using DNA-protein crosslinking. J. Cell Biol. 139:1383–1396
  • Funk, M., Hegemann, J. H., and Philippsen, P.. 1989. Chromatin digestion with restriction endonucleases reveals 150-160 bp of protected DNA in the centromere of chromosome XIV in Saccharomyces cerevisiae. Mol. Gen. Genet. 219:153–160
  • Henikoff, S., Ahmad, K., Platero, J. S., and van Steensel, B.. 2000. Heterochromatic deposition of centromeric histone H3-like proteins. Proc. Natl. Acad. Sci. USA 97:716–721
  • Hereford, L. M., Osley, M. A., Ludwig, I. J. R., and McLaughlin, C. S.. 1981. Cell-cycle regulation of yeast histone mRNA. Cell 24:367–375
  • Hoyt, M. A., Totis, L., and Roberts, B. T.. 1991. S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507–517
  • Hyland, K. M., Kingsbury, J., Koshland, D., and Hieter, P.. 1999. Ctf19p: a novel kinetochore protein in Saccharomyces cerevisiae and a potential link between the kinetochore and mitotic spindle. J. Cell Biol. 145:15–28
  • Hyman, A. A., and Sorger, P. K.. 1995. Structure and function of kinetochores in budding yeast. Annu. Rev. Cell Dev. Biol. 11:471–495
  • Keith, K. C., Baker, R. E., Chen, Y., Harris, K., Stoler, S., and Fitzgerald-Hayes, M.. 1999. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol. Cell. Biol. 19:6130–6139
  • Li, R., and Murray, A. W.. 1991. Feedback control of mitosis in budding yeast. Cell 66:519–531
  • Ludwig, J. R.II, and McLaughlin, C. S.. 1982. Periodic synthesis of histone proteins through the cell cycle of Saccharomyces cerevisiae as determined by centrifugal elutriation Proceedings of the Berkeley Workshop on Recent Advances in Yeast Molecular Biology: Recombinant DNA. 113–121 University of California, Berkeley
  • Luger, K., Mader, A. W., Richmond, R. K., Sargent, D. F., and Richmond, T. J.. 1997. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389:251–260
  • Meeks-Wagner, D., Wood, J. S., Garvik, B., and Hartwell, L. H.. 1986. Isolation of two genes that affect mitotic chromosome transmission in S. cerevisiae. Cell 44:53–63
  • Megee, P. C., Morgan, B. A., and Smith, M. M.. 1995. Histone H4 and the maintenance of genome integrity. Genes Dev. 9:1716–1727
  • Meluh, P. B., and Koshland, D.. 1997. Budding yeast centromere composition and assembly as revealed by in vivo crosslinking. Genes Dev. 11:3401–3412
  • Meluh, P. B., Yang, P., Glowczewski, L., Koshland, D., and Smith, M. M.. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607–613
  • Morgan, B. A., Mittman, B. A., and Smith, M. M.. 1991. The highly conserved N-terminal domains of histones H3 and H4 are required for normal cell cycle progression. Mol. Cell. Biol. 11:4111–4120
  • Muhlrad, D., Hunter, R., and Parker, R.. 1992. A rapid method for localized mutagenesis of yeast genes. Yeast 8:79–82
  • Ortiz, J., Stemmann, O., Rank, S., and Lechner, J.. 1999. A putative protein complex consisting of Ctf19, Mcm21, and Okp1 represents a missing link in the budding yeast kinetochore. Genes Dev. 13:1140–1155
  • Osley, M. A.. 1991. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60:827–861
  • Palmer, D. K., O'Day, K., Wener, M. H., Andrews, B. S., and Margolis, R. L.. 1987. A 17-kD centromere protein (CENP-A) copurifies with nucleosome core particles and with histones. J. Cell Biol. 104:805–815
  • Pangilinan, F., and Spencer, F.. 1996. Abnormal kinetochore structure activates the spindle assembly checkpoint in budding yeast. Mol. Biol. Cell 7:1195–1208
  • Pringle, J. R., Adams, A. E. M., Drubin, D. G., and Haarer, B. K.. 1991. Immunofluorescence methods for yeast. Methods Enzymol. 194:565–602
  • Robzyk, K., and Kassir, Y.. 1992. A simple and highly efficient procedure for rescuing autonomous plasmids from yeast. Nucleic Acids Res. 20: 3790
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Santisteban, M. S., Arents, G., Moudrianakis, E. N., and Smith, M. M.. 1989. 1997. Histone octamer function in vivo: mutations in the dimer-tetramer interfaces disrupt both gene activation and repression. EMBO J. 16:2493–2506
  • Schulman, I., and Bloom, K. S.. 1991. Centromeres: an integrated protein/DNA complex required for chromosome movement. Annu. Rev. Cell Biol. 7:311–336
  • Shelby, R. D., Vafa, O., and Sullivan, K. F.. 1997. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J. Cell Biol. 136:501–513
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Skibbens, R. V., and Hieter, P.. 1998. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu. Rev. Genet. 32:307–337
  • Smith, M. M., Yang, P., Santisteban, M. S., Boone, P. W., Goldstein, A. T., and Megee, P. C.. 1996. A novel histone H4 mutant defective for nuclear division and mitotic chromosome transmission. Mol. Cell. Biol. 16:1017–1026
  • Sorger, P. K., Severin, F. F., and Hyman, A. A.. 1994. Factors required for the binding of reassembled yeast kinetochores to microtubules in vitro. J. Cell Biol. 127:995–1008
  • Stoler, S., Keith, K. C., Curnick, K. E., and Fitzgerald-Hayes, M.. 1995. A mutation in CSE4, an essential gene encoding a novel chromatin-associated protein in yeast, causes chromosome nondisjunction and cell cycle arrest at mitosis. Genes Dev. 9:573–586
  • Sullivan, K. F., Hechenberger, M., and Masri, K.. 1994. Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J. Cell Biol. 127:581–592
  • Tsuchiya, E., Hosotani, T., and Miyakawa, T.. 1998. A mutation in NPS1/STH1, an essential gene encoding a component of a novel chromatin-remodeling complex RSC, alters the chromatin structure of Saccharomyces cerevisiae centromeres. Nucleic Acids Res. 26:3286–3292
  • Vafa, O., and Sullivan, K. F.. 1997. Chromatin containing CENP-A and alpha-satellite DNA is a major component of the inner kinetochore plate. Curr. Biol. 7:897–900
  • Wang, Y., and Burke, D. J.. 1995. Checkpoint genes required to delay cell division in response to nocodazole respond to impaired kinetochore function in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 15:6838–6844
  • Warburton, P. E., Cooke, C. A., Bourassa, S., Vafa, O., Sullivan, B. A., Stetten, G., Gimelli, G., Warburton, D., Tyler-Smith, C., Sullivan, K. F., Poirier, G. G., and Earnshaw, W. C.. 1997. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr. Biol. 7:901–904

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.