72
Views
86
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Rap2 as a Slowly Responding Molecular Switch in the Rap1 Signaling Cascade

, , , , , , , , & show all
Pages 6074-6083 | Received 29 Dec 1999, Accepted 08 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Altschuler, D. L., and Ribeiro-Neto, F.. 1998. Mitogenic and oncogenic properties of the small G protein Rap1b. Proc. Natl. Acad. Sci. USA 95:7475–7479
  • Beranger, F., Goud, B., Tavitian, A., and de Gunzburg, J.. 1991. Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc. Natl. Acad. Sci. USA 88:1606–1610
  • Beranger, F., Tavitian, A., and de Gunzburg, J.. 1991. Post-translational processing and subcellular localization of the Ras-related Rap2 protein. Oncogene 6:1835–1842
  • Bos, J. L.. 1998. All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. EMBO J. 17:6776–6782
  • Bos, J. L.. 1997. Ras-like GTPases. Biochim. Biophys. Acta 1333:M19–M31
  • Bos, J. L., Franke, B., M'Rabet, L., Reedquist, K., and Zwartkruis, F.. 1997. In search of a function for the Ras-like GTPase Rap1. FEBS Lett. 410:59–62
  • Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L., and Nadler, L. M.. 1997. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278:124–128
  • Campbell, S. L., Khosravi-Far, R., Rossman, K. L., Clark, G. J., and Der, C. J.. 1998. Increasing complexity of Ras signaling. Oncogene 17:1395–1413
  • Choy, E., Chiu, V. K., Silletti, J., Feoktistov, M., Morimoto, T., Michaelson, D., Ivanov, I. E., and Philips, M. R.. 1999. Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. Cell 98:69–80
  • Cook, S. J., Rubinfeld, B., Albert, I., and McCormick, F.. 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12:3475–3485
  • de Rooij, J., Boenink, N. M., van Triest, M., Cool, R. H., Wittinghofer, A., and Bos, J. L.. 1999. PDZ-GEF1, a guanine nucleotide exchange factor specific for Rap1 and Rap2. J. Biol. Chem. 274:38125–38130
  • de Rooij, J., Zwartkruis, F. J., Verheijen, M. H., Cool, R. H., Nijman, S. M., Wittinghofer, A., and Bos, J. L.. 1998. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature 396:474–477
  • Foster, R., Hu, K.-Q., Lu, Y., Nolan, K. M., Thissen, J., and Settleman, J.. 1996. Identification of a novel human Rho protein with unusual properties: GTPase deficiency and in vivo farnesylation. Mol. Cell. Biol. 16:2689–2699
  • Franke, B., Akkerman, J. W., and Bos, J. L.. 1997. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16:252–259
  • Gotoh, T., Hattori, S., Nakamura, S., Kitayama, H., Noda, M., Takai, Y., Kaibuchi, K., Matsui, H., Hatase, O., Takahashi, H., Kurata, T., and Matsuda, M.. 1995. Identification of Rap1 as a target for the Crk SH3 domain-binding guanine nucleotide-releasing factor C3G. Mol. Cell. Biol. 15:6746–6753
  • Gotoh, T., Niino, Y., Tokuda, M., Hatase, O., Nakamura, S., Matsuda, M., and Hattori, S.. 1997. Activation of R-Ras by Ras-guanine nucleotide-releasing factor. J. Biol. Chem. 272:18602–18607
  • Guasch, R. M., Scambler, P., Jones, G. E., and Ridley, A. J.. 1998. RhoE regulates actin cytoskeleton organization and cell migration. Mol. Cell. Biol. 18:4761–4771
  • Hattori, S., Maekawa, M., and Nakamura, S.. 1992. Identification of neurofibromatosis type I gene product as an insoluble GTPase-activating protein toward ras p21. Oncogene 7:481–485
  • Hu, C. D., Kariya, K., Kotani, G., Shirouzu, M., Yokoyama, S., and Kataoka, T.. 1997. Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with ras-dependent activation of Raf-1. J. Biol. Chem. 272:11702–11705
  • Hu, C. D., Kariya, K., Tamada, M., Akasaka, K., Shirouzu, M., Yokoyama, S., and Kataoka, T.. 1995. Cysteine-rich region of Raf-1 interacts with activator domain of post-translationally modified Ha-Ras. J. Biol. Chem. 270:30274–30277
  • Janoueix-Lerosey, I., Pasheva, E., de Tand, M. F., Tavitian, A., and de Gunzburg, J.. 1998. Identification of a specific effector of the small GTP-binding protein Rap2. Eur. J. Biochem. 252:290–298
  • Janoueix-Lerosey, I., Polakis, P., Tavitian, A., and de Gunzburg, J.. 1992. Regulation of the GTPase activity of the ras-related rap2 protein. Biochem. Biophys. Res. Commun. 189:455–464
  • Jimenez, B., Pizon, V., Lerosey, I., Beranger, F., Tavitian, A., and de Gunzburg, J.. 1991. Effects of the ras-related rap2 protein on cellular proliferation. Int. J. Cancer 49:471–479
  • Kanai, T., Hirohashi, S., Noguchi, M., Shimoyama, Y., Shimosato, Y., Noguchi, S., Nishimura, S., and Abe, O.. 1987. Monoclonal antibody highly sensitive for the detection of ras p21 in immunoblotting analysis. Jpn. J. Cancer Res. 78:1314–1318
  • Katagiri, K., Hattori, M., Minato, N., Irie, S.-K., Takatsu, K., and Kinashi, T.. 2000. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell. Biol. 20:1956–1969
  • Kawai, S.. 1980. Transformation of rat cells by fusion-infection with Rous sarcoma virus. J. Virol. 34:772–776
  • Kawasaki, H., Springett, G. M., Mochizuki, N., Toki, S., Nakaya, M., Matsuda, M., Housman, D. E., and Graybiel, A. M.. 1998. A family of cAMP-binding proteins that directly activate Rap1. Science 282:2275–2279
  • Kawasaki, H., Springett, G. M., Toki, S., Canales, J. J., Harlan, P., Blumenstiel, J. P., Chen, E. J., Bany, I. A., Mochizuki, N., Ashbacher, A., Matsuda, M., Housman, D. E., and Graybiel, A. M.. 1998. A Rap guanine nucleotide exchange factor enriched highly in the basal ganglia. Proc. Natl. Acad. Sci. USA 95:13278–13283 (Erratum 96:318, 1999.)
  • Kaziro, Y., Itoh, H., Kozasa, T., Nakafuku, M., and Satoh, T.. 1991. Structure and function of signal-transducing GTP-binding proteins. Annu. Rev. Biochem. 60:349–400
  • Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y., and Noda, M.. 1989. A ras-related gene with transformation suppressor activity. Cell 56:77–84
  • Kurachi, H., Wada, Y., Tsukamoto, N., Maeda, M., Kubota, H., Hattori, M., Iwai, K., and Minato, N.. 1997. Human SPA-1 gene product selectively expressed in lymphoid tissues is a specific GTPase-activating protein for Rap1 and Rap2. Segregate expression profiles from a rap1GAP gene product. J. Biol. Chem. 272:28081–28088
  • Lenzen, C., Cool, R. H., and Wittinghofer, A.. 1995. Analysis of intrinsic and CDC25-stimulated guanine nucleotide exchange of p21ras-nucleotide complexes by fluorescence measurements. Methods Enzymol. 255:95–109
  • Matsubara, K., Kishida, S., Matsuura, Y., Kitayama, H., Noda, M., and Kikuchi, A.. 1999. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 18:1303–1312
  • Matsuda, M., Mayer, B. J., Fukui, Y., and Hanafusa, H.. 1990. Binding of transforming protein, P47gag-crk, to a broad range of phosphotyrosine-containing proteins. Science 248:1537–1539
  • Matsuda, M., Tanaka, S., Nagata, S., Kojima, A., Kurata, T., and Shibuya, M.. 1992. Two species of human CRK cDNA encode proteins with distinct biological activities. Mol. Cell. Biol. 12:3482–3489
  • Mayer, B. J., Jove, R., Krane, J. F., Poirier, F., Calothy, G., and Hanafusa, H.. 1986. Genetic lesions involved in temperature sensitivity of the src gene products of four Rous sarcoma virus mutants. J. Virol. 60:858–867
  • Mochizuki, N., Ohba, Y., Kiyokawa, E., Kurata, T., Murakami, T., Ozaki, T., Kitabatake, A., Nagashima, K., and Matsuda, M.. 1999. Activation of the ERK/MAPK pathway by an isoform of rap1GAP associated with G alpha(i). Nature 400:891–894
  • Nancy, V., Wolthuis, R. M., de Tand, M. F., Janoueix-Lerosey, I., Bos, J. L., and de Gunzburg, J.. 1999. Identification and characterization of potential effector molecules of the Ras-related GTPase Rap2. J. Biol. Chem. 274:8737–8745
  • Niwa, H., Yamamura, K., and Miyazaki, J.. 1991. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199
  • Okada, S., Matsuda, M., Anafi, M., Pawson, T., and Pessin, J. E.. 1998. Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2-SOS and CrkII-C3G complexes. EMBO J. 17:2554–2565
  • Okada, T., Hu, C.-D., Jin, T.-G., Kariya, K.-I., Yamawaki-Kataoka, Y., and Kataoka, T.. 1999. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Mol. Cell. Biol. 19:6057–6064
  • Panayotou, G., Gish, G., End, P., Truong, O., Gout, I., Dhand, R., Fry, M. J., Hiles, I., Pawson, T., and Waterfield, M. D.. 1993. Interactions between SH2 domains and tyrosine-phosphorylated platelet-derived growth factor β-receptor sequences: analysis of kinetic parameters by a novel biosensor-based approach. Mol. Cell. Biol. 13:3567–3576
  • Posern, G., Weber, C. K., Rapp, U. R., and Feller, S. M.. 1998. Activity of Rap1 is regulated by bombesin, cell adhesion, and cell density in NIH3T3 fibroblasts. J. Biol. Chem. 273:24297–24300
  • Reedquist, K. A., and Bos, J. L.. 1998. Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J. Biol. Chem. 273:4944–4949
  • Reedquist, K. A., Ross, E., Koop, E. A., Wolthuis, R. M., Zwartkruis, F. J., van Kooyk, Y., Salmon, M., Buckley, C. D., and Bos, J. L.. 2000. The small GTPase, rap1, mediates CD31-induced integrin adhesion. J. Cell Biol. 148:1151–1158
  • Roth, J.. 1989. Postembedding labeling on Lowicryl K4M tissue sections: detection and modification of cellular components. Methods Cell Biol. 31:513–551
  • Sakoda, T., Kaibuchi, K., Kishi, K., Kishida, S., Doi, K., Hoshino, M., Hattori, S., and Takai, Y.. 1992. smg/rap1/Krev-1 p21s inhibit the signal pathway to the c-fos promoter/enhancer from c-Ki-ras p21 but not from c-raf-1 kinase in NIH3T3 cells. Oncogene 7:1705–1711
  • Satoh, T., Uehara, Y., and Kaziro, Y.. 1992. Inhibition of interleukin 3 and granulocyte-macrophage colony-stimulating factor stimulated increase of active ras. GTP by herbimycin A, a specific inhibitor of tyrosine kinases. J. Biol. Chem. 267:2537–2541
  • Tanaka, M., Gupta, R., and Mayer, B. J.. 1995. Differential inhibition of signaling pathways by dominant-negative SH2/SH3 adapter proteins. Mol. Cell. Biol. 15:6829–6837
  • Tanaka, S., Morishita, T., Hashimoto, Y., Hattori, S., Nakamura, S., Shibuya, M., Matuoka, K., Takenawa, T., Kurata, T., Nagashima, K., and Matsuda, M.. 1994. C3G, a guanine nucleotide-releasing protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc. Natl. Acad. Sci. USA 91:3443–3447
  • van den Berghe, N., Cool, R. H., Horn, G., and Wittinghofer, A.. 1997. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15:845–850
  • Vossler, M. R., Yao, H., York, R. D., Pan, M. G., Rim, C. S., and Stork, P. J.. 1997. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89:73–82
  • Yatani, A., Quilliam, L. A., Brown, A. M., and Bokoch, G. M.. 1991. Rap1A antagonizes the ability of Ras and Ras-Gap to inhibit muscarinic K+ channels. J. Biol. Chem. 266:22872–22877
  • York, R. D., Yao, H., Dillon, T., Ellig, C. L., Eckert, S. P., McCleskey, E. W., and Stork, P. J.. 1998. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622–626
  • Yoshida, Y., Kawata, M., Miura, Y., Musha, T., Sasaki, T., Kikuchi, A., and Takai, Y.. 1992. Microinjection of smg/rap1/Krev-1 p21 into Swiss 3T3 cells induces DNA synthesis and morphological changes. Mol. Cell. Biol. 12:3407–3414
  • Zhang, K., Noda, M., Vass, W. C., Papageorge, A. G., and Lowy, D. R.. 1990. Identification of small clusters of divergent amino acids that mediate the opposing effects of ras and Krev-1. Science 249:162–165

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.