9
Views
63
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Gic2p May Link Activated Cdc42p to Components Involved in Actin Polarization, Including Bni1p and Bud6p (Aip3p)

&
Pages 6244-6258 | Received 20 Mar 2000, Accepted 05 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Adams, A. E., Johnson, D. I., Longnecker, R. M., Sloat, B. F., and Pringle, J. R.. 1990. CDC42 and CDC43, two additional genes involved in budding and the establishment of cell polarity in the yeast Saccharomyces cerevisiae. J. Cell Biol. 111:131–142
  • Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K.. 1991. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York, N.Y
  • Ayscough, K. R., Stryker, J., Pokala, N., Sanders, M., Crews, P., and Drubin, D. G.. 1997. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J. Cell Biol. 137:399–416
  • Bähler, J., and Peter, M.. 2000. Cell polarity in yeast Frontiers in molecular biology: cell polarity. Drubin, D. G. 21–77 Oxford University Press, Oxford, United Kingdom
  • Bi, E., Chiavetta, J. B., Chen, H., Chen, G. C., Chan, C. S., and Pringle, J. R.. 2000. Identification of novel, evolutionarily conserved Cdc42p-interacting proteins and of redundant pathways linking Cdc24p and Cdc42p to actin polarization in yeast. Mol. Biol. Cell 11:773–793
  • Blondel, M., Alepuz, P. M., Huang, L. S., Shaham, S., Ammerer, G., and Peter, M.. 1999. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev. 13:2284–2300
  • Botstein, D., Amberg, D., Mulholland, J., Huffaker, T., Adams, A., Drubin, D., and Stearns, T.. The yeast cytoskeleton The molecular and cellular biology of the yeast Saccharomyces—cell cycle and cell biology Jones, E. W., Pringle, J. R., and Broach, J. R. 3:1–90 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Brown, J. L., Jaquenoud, M., Gulli, M. P., Chant, J., and Peter, M.. 1997. 1995. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11:2972–2982
  • Burbelo, P. D., Drechsel, D., and Hall, A.. 1995. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270:29071–29074
  • Chen, G. C., Kim, Y. J., and Chan, C. S.. 1997. The Cdc42 GTPase-associated proteins Gic1 and Gic2 are required for polarized cell growth in Saccharomyces cerevisiae. Genes Dev. 11:2958–2971
  • Eby, J. J., Holly, S. P., van Drogen, F., Grishin, A. V., Peter, M., Drubin, D. G., and Blumer, K. J.. 1998. Actin cytoskeleton organization regulated by the PAK family of protein kinases. Curr. Biol. 8:967–970
  • Evangelista, M., Blundell, K., Longtine, M. S., Chow, C. J., Adames, N., Pringle, J. R., Peter, M., and Boone, C.. 1997. Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276:118–122
  • Fujiwara, T., Tanaka, K., Mino, A., Kikyo, M., Takahashi, K., Shimizu, K., and Takai, Y.. 1998. Rho1p-Bni1p-Spa2p interactions: implication in localization of Bni1p at the bud site and regulation of the actin cytoskeleton in Saccharomyces cerevisiae. Mol. Biol. Cell 9:1221–1233
  • Galitski, T., Saldanha, A. J., Styles, C. A., Lander, E. S., and Fink, G. R.. 1999. Ploidy regulation of gene expression. Science 285:251–254
  • Guthrie, C., and Fink, G. R.. Guide to yeast genetics and molecular biology. Methods in enzymology 194: Academic Press, Inc., San Diego, Calif
  • Hall, A.. 1998. 1991. Rho GTPases and the actin cytoskeleton. Science 279:509–514
  • Harlow, E., and Lane, D.. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Holly, S. P., and Blumer, K.. 1999. PAK-family kinases regulate cell and actin polarization throughout the cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 147:845–856
  • Imamura, H., Tanaka, K., Hihara, T., Umikawa, M., Kamei, T., Takahashi, K., Sasaki, T., and Takai, Y.. 1997. Bni1p and Bnr1p: downstream targets of the Rho family small G-proteins which interact with profilin and regulate actin cytoskeleton in Saccharomyces cerevisiae. EMBO J. 16:2745–2755
  • Ito, H., Fukuda, Y., Murata, K., and Kimura, A.. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168
  • Jaquenoud, M., Gulli, M. P., Peter, K., and Peter, M.. 1998. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17:5360–5373
  • Jin, H., and Amberg, D. C.. 2000. The secretory pathway mediates localization of the cell polarity regulator Aip3p/Bud6p. Mol. Biol. Cell 11:647–661
  • Johnson, D. I.. 1999. Cdc42: an essential Rho-type GTPase controlling eukaryotic cell polarity. Microbiol. Mol. Biol. Rev. 63:54–105
  • Johnson, D. I., and Pringle, J. R.. 1990. Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J. Cell Biol. 111:143–52
  • Kim, A. S., Kakalis, L. T., Adbdul-Manan, N., Liu, G. A., and Rosen, M. K.. 2000. Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158
  • Kohno, H., Tanaka, K., Mino, A., Umikawa, M., Imamura, H., Fujiwara, T., Fujita, Y., Hotta, K., Qadota, H., Watanabe, T., Ohya, Y., and Takai, Y.. 1996. Bnip1 implicated in cytoskeletal control is a putative target of Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15:6060–6068
  • Kron, S. J., and Gow, N. A.. 1995. Budding yeast morphogenesis: signalling, cytoskeleton and cell cycle. Curr. Opin. Cell Biol. 7:845–855
  • Kunkel, T. A., Roberts, J. D., and Zakour, R. A.. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382
  • Leberer, E., Thomas, D. Y., and Whiteway, M.. 1997. Pheromone signalling and polarized morphogenesis in yeast. Curr. Opin. Genet. Dev. 7:59–66
  • Leberer, E., Wu, C. L., Leeuw, T., Fourestlieuvin, A., Segall, J. E., and Thomas, D. Y.. 1997. Functional characterization of the Cdc42p binding domain of yeast Ste20p protein kinase. EMBO J. 16:83–97
  • Lechler, T., Shevchenko, A., and Li, R.. 2000. Direct involvement of yeast type I myosins in Cdc42-dependent actin polymerization. J. Cell Biol. 148:363–373
  • Lee, L., Klee, S. K., Evangelista, M., Boone, C., and Pellman, D.. 1999. Control of mitotic spindle position by the Saccharomyces cerevisiae formin Bni1p. J. Cell Biol. 144:947–961
  • Lew, D. J., and Reed, S. I.. 1995. A cell cycle checkpoint monitors cell morphogenesis in budding yeast. J. Cell Biol. 129:739–749
  • Lew, D. J., and Reed, S. I.. 1995. Cell cycle control of morphogenesis in budding yeast. Curr. Opin. Genet. Dev. 5:17–23
  • Madhani, H. D., and Fink, G. R.. 1998. The riddle of MAP kinase signaling specificity. Trends Genet. 14:151–155
  • Miller, R. K., Matheos, D., and Rose, M. D.. 1999. The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J. Cell Biol. 144:963–975
  • Mulholland, J., Preuss, D., Moon, A., Wong, A., Drubin, D., and Botstein, D.. 1994. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J. Cell Biol. 125:381–391
  • Mumberg, D., Muller, R., and Funk, M.. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122
  • Novick, P., Field, C., and Schekman, R.. 1980. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 21:205–215
  • Peter, M., Neiman, A. M., Park, H. O., vanLohuizen, M., and Herskowitz, I.. 1996. Functional analysis of the interaction between the small GTP binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15:7046–7059
  • Peterson, J., Zheng, Y., Bender, L., Myers, A., Cerione, R., and Bender, A.. 1994. Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J. Cell Biol. 127:1395–1406
  • Pringle, J. R., Bi, E., Harkins, H. A., Zahner, J. E., De Virgilio, C., Chant, J., Corrado, K., and Fares, H.. 1995. Establishment of cell polarity in yeast. Cold Spring Harbor Symp. Quant. Biol. 60:729–744
  • Pruyne, D., and Bretscher, A.. 2000. Polarization of cell growth in yeast. I. Establishment and maintenance of polarity states. J. Cell Sci. 113:365–375
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Schluter, K., Jockusch, B. M., and Rothkegel, M.. 1989. 1997. Profilins as regulators of actin dynamics. Biochim. Biophys. Acta 1359:97–109
  • Sheu, Y. J., Santos, B., Fortin, N., Costigan, C., and Snyder, M.. 1998. Spa2p interacts with cell polarity proteins and signalling components involved in yeast cell morphogenesis. Mol. Cell. Biol. 18:4053–4069
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Snyder, M.. 1989. The SPA2 protein of yeast localizes to sites of cell growth. J. Cell Biol. 108:1419–1429
  • Theriot, J. A., and Mitchison, T. J.. 1993. The three faces of profilin. Cell 75:835–838
  • Valtz, N., and Peter, M.. 1997. Functional analysis of FAR1 in yeast. Methods Enzymol. 283:350–365
  • Wasserman, S.. 1998. FH proteins as cytoskeletal organizers. Trends Cell Biol. 8:111–115
  • Zahner, J. E., Harkins, H. A., and Pringle, J. R.. 1996. Genetic analysis of the bipolar pattern of bud site selection in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 16:1857–1870

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.