37
Views
119
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Vav Family Proteins Couple to Diverse Cell Surface Receptors

, , , , , , & show all
Pages 6364-6373 | Received 15 Feb 2000, Accepted 08 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Abe, K., Rossman, K. L., Liu, B., Ritola, K. D., Chiang, D., Campbell, S. L., Burridge, K., and Der, C. J.. 2000. Vav2 is an activator of Cdc42, Rac1, and RhoA. J. Biol. Chem. 275:10141–10149
  • Adams, J. M., Houston, H., Allen, J., Lints, T., and Harvey, R.. 1992. The hematopoietically expressed vav proto-oncogene shares homology with the dbl GDP-GTP exchange factor, the bcr gene and a yeast gene (CDC24) involved in cytoskeletal organization. Oncogene 7:611–618
  • Bustelo, X. R.. 2000. Regulatory and signaling properties of the Vav family. Mol. Cell. Biol. 20:1461–1477
  • Bustelo, X. R., and Barbacid, M.. 1992. Tyrosine phosphorylation of the vav proto-oncogene product in activated B cells. Science 256:1196–1199
  • Bustelo, X. R., Ledbetter, J. A., and Barbacid, M.. 1992. Product of vav proto-oncogene defines a new class of tyrosine protein kinase substrates. Nature 356:68–71
  • Cichowski, K., Brugge, J. S., and Brass, L. F.. 1996. Thrombin receptor activation and integrin engagement stimulate tyrosine phosphorylation of the proto-oncogene product, p95vav, in platelets. J. Biol. Chem. 271:7544–7550
  • Costello, P. S., Walters, A. E., Mee, P. J., Turner, M., Reynolds, L. F., Prisco, A., Sarner, N., Zamoyska, R., and Tybulewicz, V. L.. 1999. The Rho-family GTP exchange factor Vav is a critical transducer of T cell receptor signals to the calcium, ERK, and NF-kappaB pathways. Proc. Natl. Acad. Sci. USA 96:3035–3040
  • Crespo, P., Schuebel, K. E., Ostrom, A. A., Gutkind, J. S., and Bustelo, X. R.. 1997. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172
  • Deckert, M., Tartare-Deckert, S., Couture, C., Mustelin, T., and Altman, A.. 1996. Functional and physical interactions of Syk family kinases with the Vav proto-oncogene product. Immunity 5:591–604
  • Eck, M. J., Shoelson, S. E., and Harrison, S. C.. 1993. Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck. Nature 362:87–91
  • Feng, S., Chen, J. K., Yu, H., Simon, J. A., and Schreiber, S. L.. 1994. Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266:1241–1247
  • Fischer, K. D., Kong, Y. Y., Nishina, H., Tedford, K., Marengere, L. E., Kozieradzki, I., Sasaki, T., Starr, M., Chan, G., Gardener, S., Nghiem, M. P., Bouchard, D., Barbacid, M., Bernstein, A., and Penninger, J. M.. 1998. Vav is a regulator of cytoskeletal reorganization mediated by the T-cell receptor. Curr. Biol. 8:554–562
  • Fischer, K. D., Zmuldzinas, A., Gardner, S., Barbacid, M., Bernstein, A., and Guidos, C.. 1995. Defective T-cell receptor signalling and positive selection of Vav-deficient CD4+ CD8+ thymocytes. Nature 374:474–477
  • Gotoh, A., Takahira, H., Geahlen, R. L., and Broxmeyer, H. E.. 1997. Cross-linking of integrins induces tyrosine phosphorylation of the proto-oncogene product Vav and the protein tyrosine kinase Syk in human factor-dependent myeloid cells. Cell Growth Differ. 8:721–729
  • Han, J., Das, B., Wei, W., Van Aelst, L., Mosteller, R. D., Khosravi-Far, R., Westwick, J. K., Der, C. J., and Broek, D.. 1997. Lck regulates Vav activation of members of the Rho family of GTPases. Mol. Cell. Biol. 17:1346–1353
  • Han, J., Luby-Phelps, K., Das, B., Shu, X., Xia, Y., Mosteller, R. D., Krishna, U. M., Falck, J. R., White, M. A., and Broek, D.. 1998. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560
  • Hedin, K. E., Bell, M. P., Kalli, K. R., Huntoon, C. J., Sharp, B. M., and McKean, D. J.. 1997. Delta-opioid receptors expressed by Jurkat T cells enhance IL-2 secretion by increasing AP-1 complexes and activity of the NF-AT/AP-1- binding promoter element. J. Immunol. 159:5431–5440
  • Henske, E. P., Short, M. P., Jozwiak, S., Bovey, C. M., Ramlakhan, S., Haines, J. L., and Kwiatkowski, D. J.. 1995. Identification of VAV2 on 9q34 and its exclusion as the tuberous sclerosis gene TSC1. Ann. Hum. Genet. 59:25–37
  • Hofmann, T. G., Hehner, S. P., Droge, W., and Schmitz, M. L.. 2000. Caspase-dependent cleavage and inactivation of the Vav1 proto-oncogene product during apoptosis prevents IL-2 transcription. Oncogene 19:1153–1163
  • Holsinger, L. J., Graef, I. A., Swat, W., Chi, T., Bautista, D. M., Davidson, L., Lewis, R. S., Alt, F. W., and Crabtree, G. R.. 1998. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8:563–572
  • Kaplan, K. B., Swedlow, J. R., Morgan, D. O., and Varmus, H. E.. 1995. c-Src enhances the spreading of src−/− fibroblasts on fibronectin by a kinase-independent mechanism. Genes Dev. 9:1505–1517
  • Katzav, S., Cleveland, J. L., Heslop, H. E., and Pulido, D.. 1991. Loss of the amino-terminal helix-loop-helix domain of the vav proto-oncogene activates its transforming potential. Mol. Cell. Biol. 11:1912–1920
  • Katzav, S., Martin-Zanca, D., and Barbacid, M.. 1989. vav, a novel human oncogene derived from a locus ubiquitously expressed in hematopoietic cells. EMBO J. 8:2283–2290
  • Kazlauskas, A., Feng, G. S., Pawson, T., and Valius, M.. 1993. The 64-kDa protein that associates with the platelet-derived growth factor receptor beta subunit via Tyr-1009 is the SH2-containing phosphotyrosine phosphatase Syp. Proc. Natl. Acad. Sci. USA 90:6939–6943
  • Kozak, M.. 1987. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15:8125–8148
  • Kuhne, M. R., Ku, G., and Weiss, A.. 2000. A guanine nucleotide exchange factor-independent function of Vav1 in transcriptional activation. J. Biol. Chem. 275:2185–2190
  • Leong, L., Hughes, P. E., Schwartz, M. A., Ginsberg, M. H., and Shattil, S. J.. 1995. Integrin signaling: roles for the cytoplasmic tails of alpha IIb beta 3 in the tyrosine phosphorylation of pp125FAK. J. Cell Sci. 108:3817–3825
  • Lewis, J. M., Baskaran, R., Taagepera, S., Schwartz, M. A., and Wang, J. Y.. 1996. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc. Natl. Acad. Sci. USA 93:15174–15179
  • Margolis, B., Hu, P., Katzav, S., Li, W., Oliver, J. M., Ullrich, A., Weiss, A., and Schlessinger, J.. 1992. Tyrosine phosphorylation of vav proto-oncogene product containing SH2 domain and transcription factor motifs. Nature 356:71–74
  • Michel, F., Grimaud, L., Tuosto, L., and Acuto, O.. 1998. Fyn and ZAP-70 are required for Vav phosphorylation in T cells stimulated by antigen-presenting cells. J. Biol. Chem. 273:31932–31938
  • Miranti, C. K., Leng, L., Maschberger, P., Brugge, J. S., and Shattil, S. J.. 1998. Identification of a novel integrin signaling pathway involving the kinase Syk and the guanine nucleotide exchange factor Vav1. Curr. Biol. 8:1289–1299
  • Movilla, N., and Bustelo, X. R.. 1999. Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol. Cell. Biol. 19:7870–7885
  • Pandey, A., Podtelejnikov, A. V., Blagoev, B., Bustelo, X. R., Mann, M., and Lodish, H. F.. 2000. Analysis of receptor signaling pathways by mass spectrometry: Identification of Vav-2 as a substrate of the epidermal and platelet- derived growth factor receptors. Proc. Natl. Acad. Sci. USA 97:179–184
  • Richardson, A., and Parsons, J. T.. 1995. Signal transduction through integrins: a central role for focal adhesion kinase? Bioessays 17:229–236
  • Romero, F., and Fischer, S.. 1996. Structure and function of vav. Cell Signal. 8:545–553
  • Salojin, K. V., Zhang, J., and Delovitch, T. L.. 1999. TCR and CD28 are coupled via ZAP-70 to the activation of the Vav/Rac-1- /PAK-1/p38 MAPK signaling pathway. J. Immunol. 163:844–853
  • Schuebel, K. E., Bustelo, X. R., Nielsen, D. A., Song, B. J., Barbacid, M., Goldman, D., and Lee, I. J.. 1996. Isolation and characterization of murine vav2, a member of the vav family of proto-oncogenes. Oncogene 13:363–371
  • Schuebel, K. E., Movilla, N., Rosa, J. L., and Bustelo, X. R.. 1998. Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J. 17:6608–6621
  • Songyang, Z., Shoelson, S. E., McGlade, J., Olivier, P., Pawson, T., Bustelo, X. R., Barbacid, M., Sabe, H., Hanafusa, H., Yi, T. et al. 1994. Specific motifs recognized by the SH2 domains of Csk, 3BP2, fps/fes, GRB-2, HCP, SHC, Syk, and Vav. Mol. Cell. Biol. 14:2777–2785
  • Tanaka, M., and Herr, W.. 1990. Differential transcriptional activation by Oct-1 and Oct-2: interdependent activation domains induce Oct-2 phosphorylation. Cell 60:375–386
  • Tarakhovsky, A., Turner, M., Schaal, S., Mee, P. J., Duddy, L. P., Rajewsky, K., and Tybulewicz, V. L.. 1995. Defective antigen receptor-mediated proliferation of B and T cells in the absence of Vav. Nature 374:467–470
  • Teramoto, H., Salem, P., Robbins, K. C., Bustelo, X. R., and Gutkind, J. S.. 1997. Tyrosine phosphorylation of the vav proto-oncogene product links FcepsilonRI to the Rac1-JNK pathway. J. Biol. Chem. 272:10751–10755
  • Ting, A. T., Pimentel-Muinos, F. X., and Seed, B.. 1996. RIP mediates tumor necrosis factor receptor 1 activation of NF-kappaB but not Fas/APO-1-initiated apoptosis. EMBO J. 15:6189–6196
  • Valius, M., and Kazlauskas, A.. 1993. Phospholipase C-gamma 1 and phosphatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell 73:321–334
  • Valius, M., Secrist, J. P., and Kazlauskas, A.. 1995. The GTPase-activating protein of Ras suppresses platelet-derived growth factor beta receptor signaling by silencing phospholipase C-γ 1. Mol. Cell. Biol. 15:3058–3071
  • Van Aelst, L., and D'Souza-Schorey, C.. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322
  • Wadzinski, B. E., Eisfelder, B. J., Peruski, L. F.Jr., Mumby, M. C., and Johnson, G. L.. 1992. NH2-terminal modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells. J. Biol. Chem. 267:16883–16888
  • Waksman, G., Shoelson, S. E., Pant, N., Cowburn, D., and Kuriyan, J.. 1993. Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72:779–790
  • Wu, J., Katzav, S., and Weiss, A.. 1995. A functional T-cell receptor signaling pathway is required for p95vav activity. Mol. Cell. Biol. 15:4337–4346
  • Wu, J., Motto, D. G., Koretzky, G. A., and Weiss, A.. 1996. Vav and SLP-76 interact and functionally cooperate in IL-2 gene activation. Immunity 4:593–602
  • Ye, Z. S., and Baltimore, D.. 1994. Binding of Vav to Grb2 through dimerization of Src homology 3 domains. Proc. Natl. Acad. Sci. USA 91:12629–12633
  • Yron, I., Deckert, M., Reff, M. E., Munshi, A., Schwartz, M. A., and Altman, A.. 1999. Integrin-dependent tyrosine phosphorylation and growth regulation by Vav. Cell. Adhes. Commun. 7:1–11
  • Yu, H., Chen, J. K., Feng, S., Dalgarno, D. C., Brauer, A. W., and Schreiber, S. L.. 1994. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945
  • Zhang, R., Alt, F. W., Davidson, L., Orkin, S. H., and Swat, W.. 1995. Defective signalling through the T- and B-cell antigen receptors in lymphoid cells lacking the vav proto-oncogene. Nature 374:470–473
  • Zheng, L., Sjolander, A., Eckerdal, J., and Andersson, T.. 1996. Antibody-induced engagement of beta 2 integrins on adherent human neutrophils triggers activation of p21ras through tyrosine phosphorylation of the protooncogene product Vav. Proc. Natl. Acad. Sci. USA 93:8431–8436

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.