7
Views
39
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Sgs1 Helicase Activity Is Required for Mitotic but Apparently Not for Meiotic Functions

, , , , , , , & show all
Pages 6399-6409 | Received 20 Apr 2000, Accepted 07 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Ajimura, M., Leem, S.-H., and Ogawa, H.. 1993. Identification of new genes required for meiotic recombination in Saccharomyces cerevisiae. Genetics 133:51–66
  • Alani, N., Padmore, R., and Kleckner, N.. 1990. Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61:419–436
  • Bennett, R. J., Sharp, J. A., and Wang, J. C.. 1998. Purification and characterization of the Sgs1 DNA helicase activity of Saccharomyces cerevisiae. J. Biol. Chem. 273:9644–9650
  • Bishop, D. K., Park, D., Xu, L., and Kleckner, N.. 1992. DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69:439–456
  • Cao, L., Alani, E., and Kleckner, N.. 1990. A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61:1089–1101
  • Confalonieri, F., Elie, C., Nadal, M., de la Tour, C. B., Forterre, P., and Duguet, M.. 1993. Reverse gyrase: a helicase-like domain and a type I topoisomerase in the same polypeptide. Proc. Natl. Acad. Sci. USA 90:4753–4757
  • Dykstra, C. C., Kitada, K., Clark, A. B., Hamatake, R. K., and Sugino, A.. 1991. Cloning and characterization of DST2, the gene for DNA strand transfer protein β from Saccharomyces cerevisiae. Mol. Cell. Biol. 11:2583–2592
  • Ellis, N. A., Groden, J., Ye, T.-Z., Straughen, J., Lennon, D. J., Ciocci, S., Proytcheva, M., and German, J.. 1995. The Bloom's syndrome gene product is homologous to RecQ helicases. Cell 83:655–666
  • Epstein, C. J., Martin, G. M., Schultz, A. L., and Motulsky, A. G.. 1966. Werner's syndrome: a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine 45:177–222
  • Frei, C., and Gasser, S. M.. 2000. The yeast Sgs1p helicase acts upstream of Rad53p in the DNA replication checkpoint and colocalizes with Rad53p in S-phase-specific foci. Genes Dev. 14:81–96
  • Gangloff, S., McDonald, J. P., Bendixen, C., Arthur, L., and Rothstein, R.. 1994. The yeast type 1 topoisomerase Top3 interacts with Sgs1, a DNA helicase homologue: a potential eukaryotic reverse gyrase. Mol. Cell. Biol. 14:8391–8398
  • Gangloff, S., deMassy, B., Arthur, L., Rothstein, R., and Fabre, F.. 1999. The essential role of yeast topoisomerase III in meiosis depends on recombination. EMBO J. 18:1701–1711
  • German, J.. 1993. Bloom syndrome: a Mendelian prototype of somatic mutational disease. Medicine 72:393–406
  • Goyon, C., and Lichten, M.. 1993. Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex DNA is formed late in meiotic prophase. Mol. Cell. Biol. 13:373–382
  • Johzuka, K., and Ogawa, H.. 1995. Interaction of Mre11 and Rad50: two proteins required for DNA repair and meiosis-specific double-strand break formation in Saccharomyces cerevisiae. Genetics 139:1521–1532
  • Kauli, R., Prager-Lewin, R., Kaufman, H., and Laron, Z.. 1977. Gonadal function in Bloom's syndrome. Clin. Endocrinol. 6:285–289
  • Keeney, S., Giroux, C. N., and Kleckner, N.. 1997. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell 88:375–384
  • Kim, R. A., and Wang, J. C.. 1992. Identification of the yeast TOP3 gene product as a single strand-specific DNA topoisomerase. J. Biol. Chem. 267:17178–17185
  • Kitao, S., Ohsugi, I., Ichikawa, K., Goto, M., Furuichi, Y., and Shimamoto, A.. 1998. Cloning of two new human helicase genes of the RecQ family: biological significance of multiple species in higher eukaryotes. Genomics 54:443–452
  • Kitao, S., Shimamoto, A., Goto, M., Miller, R. W., Smithson, W. A., Lindor, N. M., and Furuichi, Y.. 1999. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat. Genet. 22:82–84
  • Klapholz, S., Waddell, C. S., and Esposito, R. E.. 1985. The role of the SPO11 gene in meiotic recombination in yeast. Genetics 110:187–216
  • Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D., and Rehrauer, W. M.. 1994. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58:401–465
  • Lu, J., Mullen, J. R., Brill, S. J., Kleff, S., Romeo, A. M., and Sternglanz, R.. 1996. Human homologues of yeast helicase. Nature 383:678–679
  • Lydall, D., and Weinert, T.. 1995. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270:1488–1491
  • Lydall, D., Nikolsky, Y., Bishop, D. K., and Weinert, T.. 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383:840–843
  • Malone, R. E., and Esposito, R. E.. 1981. Recombinationless meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:891–901
  • Mao-Draayer, Y., Galbraith, A. M., Pittman, D. L., Cool, M., and Malone, R. E.. 1996. Analysis of meiotic recombination pathways in the yeast Saccharomyces cerevisiae. Genetics 144:71–86
  • Martin, G. M.. 1977. Cellular aging-clonal senescence. Am. J. Pathol. 89:484–511
  • McCarroll, R. M., and Esposito, R. E.. 1994. SPO13 negatively regulates the progression of mitotic and meiotic nuclear division in Saccharomyces cerevisiae. Genetics 138:47–60
  • Nakayama, K., Irino, N., and Nakayama, H.. 1985. The recQ gene of Escherichia coli K12: molecular cloning and isolation of insertion mutants. Mol. Gen. Genet. 200:266–271
  • Onoda, F., Seki, M., Miyajima, A., and Enomoto, T.. 2000. Elevation of sister chromatid exchange in Saccharomyces cerevisiae sgs1 disruptants and the relevance of the disruptants as a system to evaluate mutations in Bloom's syndrome gene. Mutat. Res. 459:203–209
  • Puranam, K. L., and Blackshear, P. J.. 1994. Cloning and characterization of RecQL, a potential human homologue of the Escherichia coli DNA helicase RecQ. J. Biol. Chem. 269:29838–29845
  • Resnick, M. A., Sugino, A., Nitiss, J., and Chow, T.. 1984. DNA polymerase, deoxyribonuclease, and recombination during meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:2811–2817
  • Rockmill, B., and Roeder, G. S.. 1990. Meiosis in asynaptic yeast. Genetics 126:563–574
  • Rose, D., Thomas, W., and Holm, C.. 1990. Segregation of recombined chromosomes in meiosis I requires DNA topoisomerase II. Cell 60:1009–1017
  • Rothstein, R.. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Seki, M., Miyazawa, H., Tada, S., Yanagisawa, J., Yamaoka, T., Hoshino, S., Ozawa, K., Eki, T., Nogami, M., Okumura, K., Taguchi, H., Hanaoka, F., and Enomoto, T.. 1989. 1994. Molecular cloning of cDNA encoding human DNA helicase Q1 which has homology to Escherichia coli RecQ helicase and localization of the gene at chromosome 12p12. Nucleic Acids Res. 22:4566–4573
  • Seki, T., Seki, M., Katada, T., and Enomoto, T.. 1998. Isolation of a cDNA encoding mouse DNA topoisomerase III which is highly expressed at the mRNA level in the testis. Biochim. Biophys. Acta 1396:127–131
  • Seki, T., Seki, M., Onodera, R., Katada, T., and Enomoto, T.. 1998. Cloning of cDNA encoding a novel mouse DNA topoisomerase III (Topo IIIβ) possessing negatively supercoiled DNA relaxing activity, whose message is highly expressed in the testis. J. Biol. Chem. 273:28553–28556
  • Seki, T., Wang, W.-S., Okumura, N., Seki, M., Katada, T., and Enomoto, T.. 1998. cDNA cloning of mouse BLM gene, the homologue to human Bloom's syndrome gene, which is highly expressed in the testis at the mRNA level. Biochim. Biophys. Acta 1398:377–381
  • Sherman, F., Fink, G. R., and Hicks, J. B.. 1983. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Sinclair, D. A., Mills, K., and Guarente, L.. 1997. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–1316
  • Stewart, E., Chapman, C. R., Al-Khodairy, F., Carr, A. M., and Enoch, T.. 1997. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16:2682–2692
  • Storlazzi, A., Xu, L., Cao, L., and Kleckner, N.. 1995. Crossover and noncrossover recombination during meiosis: timing and pathway relationships. Proc. Natl. Acad. Sci. USA 92:8512–8516
  • Sun, H., Treco, D., Schultes, N. P., and Szostak, J. W.. 1989. Double-strand breaks at an initiation site for meiotic gene conversion. Nature 338:87–90
  • Thomas, B. J., and Rothstein, R.. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630
  • Walpita, D., Plug, A. W., Neff, N. F., German, J., and Ashley, T.. 1999. Bloom's syndrome protein, BLM, colocalizes with replication protein A in meiotic prophase nuclei of mammalian spermatocytes. Proc. Natl. Acad. Sci. USA 96:5622–5627
  • Watt, P. M., Louis, E. J., Borts, R. H., and Hickson, I. D.. 1995. Sgs1: a eukaryotic homolog of E. coli RecQ that interacts with topoisomerase II in vivo and is required for faithful chromosome segregation. Cell 81:253–260
  • Watt, P. M., Hickson, I. D., Borts, R. H., and Louis, E. J.. 1996. SGS1, a homologue of the Bloom's and Werner's syndrome genes, is required for maintenance of genome stability in Saccharomyces cerevisiae. Genetics 144:935–945
  • Wu, T.-C., and Lichten, M.. 1994. Meiosis-induced double strand break sites determined by yeast chromatin structure. Science 263:515–518
  • Xu, L., Weiner, B. M., and Kleckner, N.. 1997. Meiotic cells monitor the status of the interhomolog recombination complex. Genes Dev. 11:106–118
  • Yamagata, K., Kato, J., Shimamoto, A., Goto, M., Furuichi, Y., and Ikeda, H.. 1998. Bloom's and Werner's syndrome genes suppress hyperrecombination in yeast sgs1 mutant: implication for genomic instability in human diseases. Proc. Natl. Acad. Sci. USA 95:8733–8738
  • Yu, C.-E., Oshima, J., Fu, Y.-H., Wijsman, E. M., Hisama, F., Alisch, R., Matthews, S., Nakura, J., Miki, T., Ouais, S., Martin, G. M., Mulligan, J., and Schellenberg, G. D.. 1996. Positional cloning of the Werner's syndrome gene. Science 272:258–262

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.