19
Views
23
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Cell Cycle-Dependent Binding of Yeast Heat Shock Factor to Nucleosomes

, &
Pages 6435-6448 | Received 23 Feb 2000, Accepted 16 May 2000, Published online: 28 Mar 2023

REFERENCES

  • Almer, A., Rudolph, H., Hinnen, A., and Horz, W.. 1986. Removal of positioned nucleosomes from the yeast PHO5 promoter upon PHO5 induction releases additional upstream activating DNA elements. EMBO J. 5:2689–2696
  • Amin, J., Fernandez, M., Ananthan, J., Lis, J. T., and Voellmy, R.. 1994. Cooperative binding of heat shock transcription factor to the Hsp70 promoter in vivo and in vitro. J. Biol. Chem. 269:4804–4811
  • Annunziato, A. T., and Seale, R. L.. 1983. Histone deacetylation is required for the maturation of newly replicated chromatin. J. Biol. Chem. 258:12675–12684
  • Aparicio, O. M., and Gottschling, D. E.. 1994. Overcoming telomeric silencing: a trans-activator competes to establish gene expression in a cell cycle-dependent way. Genes Dev. 8:1133–1146
  • Archer, T. K., Cordingley, M. G., Wolford, R. G., and Hager, G. L.. 1991. Transcription factor access is mediated by accurately positioned nucleosomes on the mouse mammary tumor virus promoter. Mol. Cell. Biol. 11:688–698
  • Balasubramanian, B., and Morse, R. H.. 1999. Binding of Gal4p and Bicoid to nucleosomal sites in yeast in the absence of replication. Mol. Cell. Biol. 19:2977–2985
  • Barton, M. C., and Emerson, B. M.. 1994. Regulated expression of the β-globin gene locus in synthetic nuclei. Genes Dev. 8:2453–2465
  • Bonne-Andrea, C., Wong, M. L., and Alberts, B. M.. 1990. In vitro replication through nucleosomes without histone displacement. Nature 343:719–726
  • Bonner, J., Ballou, C., and Fackenthal, D.. 1994. Interactions between DNA-bound trimers of the yeast heat shock factor. Mol. Cell. Biol. 14:501–508
  • Chen, J., and Pederson, D. S.. 1993. A distal heat shock element promotes the rapid response to heat shock of the HSP26 gene in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 268:7442–7448
  • Cote, J., Quinn, J., Workman, J. L., and Peterson, C. L.. 1994. Stimulation of GAL4 derivative binding to nucleosomal DNA by the yeast SWI/SNF complex. Science 265:53–60
  • Cuatrecasas, P., Fuchs, S., and Anfinsen, C. B.. 1967. Catalytic properties and specificity of the extracellular nuclease of Staphylococcus aureus. J. Biol. Chem. 242:1541–1547
  • Cusick, M. E., Herman, T. H., DePamphilis, M. L., and Wassarman, P. M.. 1981. Structure of chromatin at deoxyribonucleic acid replication forks: prenucleosomal deoxyribonucleic acid is rapidly excised from replicating simian virus 40 chromosomes by micrococcal nuclease. Biochemistry 20:6648–6658
  • Davis, N. G., Horecka, J. L., and Sprague, G. F.. 1993. Cis- and trans-acting functions required for endocytosis of the yeast pheromone receptors. J. Cell Biol. 122:53–65
  • Devlin, C., Tice-Baldwin, K., Shore, D., and Arndt, K. T.. 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11:3642–3651
  • Elford, H. L.. 1968. Effect of hydroxyurea on ribonucleotide reductase. Biochem. Biophys. Res. Commun. 33:129–135
  • Erkine, A. M., Adams, C. C., Diken, T., and Gross, D. S.. 1996. Heat shock factor gains access to the yeast HSC82 promoter independently of other sequence-specific factors and antagonizes nucleosomal repression of basal and induced transcription. Mol. Cell. Biol. 16:7004–7017
  • Erkine, A. M., Magrogan, S. F., Sekinger, E. A., and Gross, D. S.. 1999. Cooperative binding of heat shock factor to the yeast HSP82 promoter in vivo and in vitro. Mol. Cell. Biol. 19:1627–1639
  • Fascher, K.-D., Schmitz, J., and Horz, W.. 1990. Role of trans-activating proteins in the generation of active chromatin at the PHO5 promoter in S. cerevisiae. EMBO J. 9:2523–2528
  • Friedman, K. L., Diller, J. D., Ferguson, B. M., Nyland, S. V. M., Brewer, B. J., and Fangman, W. L.. 1996. Multiple determinants controlling activation of yeast replication origins late in S phase. Genes Dev. 10:1595–1607
  • Friedman, K. L., Raghuraman, M. K., Fangman, W. L., and Brewer, B. J.. 1995. Analysis of the temporal program of replication initiation in yeast chromosomes. J. Cell Sci. Suppl. 19:51–58
  • Geraghty, D. S., Sucic, H. B., Chen, J., and Pederson, D. S.. 1998. Evidence that partial unwrapping of DNA from nucleosomes facilitates the binding of heat shock factor following DNA replication in yeast. J. Biol. Chem. 273:20463–20472
  • Giardina, C., and Lis, J. T.. 1995. Dynamic protein-DNA architecture of a yeast heat shock promoter. Mol. Cell. Biol. 15:2737–2744
  • Gross, D. S., Adams, C. C., Lee, S., and Stentz, B.. 1993. A critical role for heat shock transcription factor in establishing a nucleosome-free region over the TATA-initiation site of the yeast HSP82 heat shock gene. EMBO J. 12:3931–3945
  • Gross, D. S., English, K. E., Collins, K. W., and Lee, S.. 1990. Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J. Mol. Biol. 216:611–631
  • Guacci, V., Hogan, E., and Koshland, D.. 1994. Chromosome condensation and sister chromatid pairing in budding yeast. J. Cell Biol. 125:517–530
  • Han, M., and Grunstein, M.. 1988. Nucleosome loss activates yeast downstream promoters in vivo. Cell 55:1137–1145
  • Hershkovitz, M., and Riggs, A. D.. 1995. Metaphase chromosome analysis by ligation-mediated PCR: heritable chromatin structure and a comparison of active and inactive X chromosomes. Proc. Natl. Acad. Sci. USA 92:2379–2383
  • Hirschhorn, J. N., Brown, S. A., Clark, C. D., and Winston, F.. 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6:2288–2298
  • Hoffman, C. S., and Winston, F.. 1987. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272
  • Holtzer, H., Weintraub, H., Mayne, R., and Mochan, B.. 1972. The cell cycle, cell lineages, and cell differentiation. Curr. Top. Dev. Biol. 7:229–256
  • Jackson, V.. 1990. In vivo studies on the dynamics of histone-DNA interaction: evidence for nucleosome dissolution during replication and transcription and a low level of dissolution independent of both. Biochemistry 29:719–731
  • Kamakaka, R. T., Bulger, M., and Kadonaga, J. T.. 1993. Potentiation of RNA polymerase II transcription by Gal4-VP16 during but not after DNA replication and chromatin assembly. Genes Dev. 7:1779–1795
  • Knezetic, J. A., and Luse, D. S.. 1986. The presence of nucleosomes on a DNA template prevents initiation by RNA polymerase II in vitro. Cell 45:95–104
  • Kornberg, R. D., and Lorch, Y.. 1991. Irresistible force meets immovable object: transcription and the nucleosome. Cell 67:833–836
  • Kornberg, R. D., and Lorch, Y.. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294
  • Krebs, J. E., Kuo, M.-H., Allis, C. D., and Peterson, C. L.. 1999. Cell cycle-regulated histone acetylation required for expression of the yeast HO gene. Genes Dev. 13:1412–1421
  • Kwon, H., Imbalzano, A. N., Khavarl, P. A., Kingston, R. E., and Green, M. R.. 1994. Nucleosome disruption and enhancement of activator binding by a human SWI/SNF complex. Nature 370:477–481
  • Lee, D. Y., Hayes, J. J., Pruss, D., and Wolffe, A. P.. 1993. A positive role for histone acetylation in transcription factor access to nucleosomal DNA. Cell 72:73–84
  • Lee, S., and Gross, D. S.. 1993. Conditional silencing: The HMRE mating-type silencer exerts a rapidly reversible position effect on the yeast HSP82 heat shock gene. Mol. Cell. Biol. 13:727–738
  • Lew, D. J., Weinert, T., and Pringle, J. R.. Cell cycle control in Saccharomyces cerevisiae The molecular and cellular biology of the yeast Saccharomyces Pringle, J. R., Broach, J. R., and Jones, E. W. 3:607–695 Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Littlefield, O., and Nelson, H. C. M.. 1999. 1997. A new use for the ‘wing’ of the ‘winged’ helix-turn-helix motif in the HSF-DNA cocrystal. Nat. Struct. Biol. 6:464–470
  • Lorch, Y., LaPointe, J. W., and Kornberg, R. D.. 1987. Nucleosomes inhibit the initiation of transcription but allow chain elongation with the displacement of histones. Cell 49:203–210
  • Martinez-Balbas, M. A., Dey, A., Rabindran, S. K., Ozato, K., and Wu, C.. 1995. Displacement of sequence-specific transcription factors from mitotic chromatin. Cell 83:29–38
  • Matsuzaki, H., Nakajima, R., Nishiyama, J., Araki, H., and Oshima, Y.. 1990. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J. Bacteriol. 172:610–618
  • McDaniel, D., Caplan, A. J., Lee, M. S., Adams, C. C., Fishel, B. R., Gross, D. S., and Garrard, W. T.. 1989. Basal-level expression of the yeast HSP82 gene requires a heat shock regulatory element. Mol. Cell. Biol. 9:4789–4798
  • Michelotti, E. F., Sanford, S., and Levens, D.. 1997. Marking of active genes on mitotic chromosomes. Nature 388:895–899
  • Nightingale, K. P., Wellinger, R. E., Sogo, J. M., and Becker, P. B.. 1998. Histone acetylation facilitates RNA polymerase II transcription of the Drosophila hsp26 gene in chromatin. EMBO J. 17:2865–2876
  • Oehlen, L. J. W. M., and Cross, F. R.. 1994. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev. 8:1058–1070
  • Park, H.-O., and Craig, E. A.. 1989. Positive and negative regulation of basal expression of a yeast HSP70 gene. Mol. Cell. Biol. 9:2025–2033
  • Pederson, D. S., and Fidrych, T.. 1994. Heat shock factor can activate transcription while bound to nucleosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:189–199
  • Perisic, O., Xiao, H., and Lis, J. T.. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5 bp recognition unit. Cell 59:797–806
  • Pillus, L., and Solomon, F.. 1986. Components of microtubular structures in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 83:2468–2472
  • Polach, K. J., and Widom, J.. 1995. Mechanism of protein access to specific DNA sequences in chromatin: a dynamic equilibrium model for gene regulation. J. Mol. Biol. 254:130–149
  • Reik, A., Schutz, G., and Stewart, A. F.. 1991. Glucocorticoids are required for establishment and maintenance of an alteration in chromatin structure: induction leads to reversible disruption of nucleosomes over an enhancer. EMBO J. 10:2569–2576
  • Sekinger, E. A., and Gross, D. S.. 1999. SIR repression of a yeast heat shock gene: UAS and TATA footprints persist within heterochromatin. EMBO J. 18:7041–7055
  • Sif, S., Stukenberg, P. T., Kirschner, M. W., and Kingston, R. E.. 1998. Mitotic inactivation of a human SWI/SNF chromatin remodeling complex. Genes Dev. 12:2842–2851
  • Simpson, R. T.. 1990. Nucleosome positioning can affect the function of a cis-acting DNA element in vivo. Nature 343:387–389
  • Smith, P. A., Jackson, V., and Chalkley, R.. 1984. Two-stage maturation process for newly replicated chromatin. Biochemistry 23:1576–1581
  • Sorger, P. K., and Nelson, H. C. M.. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813
  • Straka, C., and Horz, W.. 1991. A functional role for nucleosomes in the repression of a yeast promoter. EMBO J. 10:361–368
  • Struhl, K.. 1999. Fundamentally different logic of gene regulation in eukaryotes and prokaryotes. Cell 98:1–4
  • Svaren, J., and Chalkley, R.. 1990. The structure and assembly of active chromatin. Trends Genet. 6:52–56
  • Szent-Gyorgyi, C., Finkelstein, D. B., and Garrard, W. T.. 1987. Sharp boundaries demarcate the chromatin structure of a yeast heat-shock gene. J. Mol. Biol. 193:71–80
  • Taylor, I. C., Workman, J. L., Schuetz, T. J., and Kingston, R. E.. 1991. Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev. 5:1285–1298
  • Truss, M., Bartsch, J., Schelbert, A., Hache, R. J. G., and Beato, M.. 1995. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14:1737–1751
  • Verdin, E., Paras, P., and Lint, C. V.. 1993. Chromatin disruption in the promoter of human immunodeficiency virus type 1 during transcriptional activation. EMBO J. 12:3249–3259
  • Vettese-Dadey, M., Grant, P. A., Hebbes, T. R., Crane-Robinson, C., Allis, C. D., and Workman, J. L.. 1996. Acetylation of histone H4 plays a primary role in enhancing transcription factor binding to nucleosomal DNA in vitro. EMBO J. 15:2508–2518
  • Wong, J., Shi, Y.-B., and Wolffe, A. P.. 1997. Determinants of chromatin disruption and transcriptional regulation instigated by the thyroid hormone receptor: hormone-regulated chromatin disruption is not sufficient for transcriptional activation. EMBO J. 16:3158–3171
  • Worcel, A., Han, S., and Wong, M. L.. 1978. Assembly of newly replicated chromatin. Cell 15:969–977
  • Workman, J. L., and Kingston, R. E.. 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67:545–579
  • Workman, J. L., and Roeder, R. G.. 1987. Binding of transcription factor TFIID to the major late promoter during in vitro nucleosome assembly potentiates subsequent initiation by RNA polymerase II. Cell 51:613–622
  • Wu, C.. 1997. Chromatin remodeling and the control of gene expression. J. Biol. Chem. 272:28171–28174
  • Xu, M., Simpson, R. T., and Kladde, M. P.. 1998. Gal4p-mediated chromatin remodeling depends on binding site position in nucleosomes but does not require DNA replication. Mol. Cell. Biol. 18:1201–1212
  • Yu, L., and Morse, R. H.. 1999. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:5279–5288

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.