3
Views
14
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Prion-Dependent Switching between Respiratory Competence and Deficiency in the Yeast nam9-1Mutant

, , &
Pages 7220-7229 | Received 15 May 2000, Accepted 29 Jun 2000, Published online: 28 Mar 2023

REFERENCES

  • Altamura, N., Dujardin, G., Groudinsky, O., and Slonimski, P. P.. 1994. Two adjacent nuclear genes, ISF1 and NAM7/UPF1, cooperatively participate in mitochondrial functions in Saccharomyces cerevisiae. Mol. Gen. Genet. 242:49–56
  • Biswas, T. K., and Getz, G. S.. 1999. The single amino acid changes in the yeast mitochondrial S4 ribosomal protein cause temperature-sensitive defect in the accumulation of mitochondrial 15S rRNA. Biochemistry 38:13042–13054
  • Boguta, M., Chacinska, A., Murawski, M., and Szczesniak, B.. 1997. Expression of the yeast NAM9 gene coding for mitochondrial ribosomal protein. Acta Biochim. Pol. 44:251–258
  • Boguta, M., Dmochowksa, A., Borsuk, P., Wrobel, K., Gargouri, A., Lazowska, J., Slonimski, P. P., Szczesniak, B., and Kruszewska, A.. 1992. NAM9 nuclear suppressor of mitochondrial ochre mutations in Saccharomyces cerevisiae codes for a protein homologous to S4 ribosomal proteins from chloroplasts, bacteria, and eucaryotes. Mol. Cell. Biol. 12:402–412
  • Bonnefoy, N., Chalvet, F., Hamel, P., Slonimski, P. P., and Dujardin, G.. 1994. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239:201–212
  • Chen, D. C., Yang, B. C., and Kuo, T. T.. 1992. One-step transformation of yeast in stationary phase. Curr. Genet. 21:83–84
  • Chen, P., Johnson, P., Sommer, T., Jentsch, S., and Hochstrasser, M.. 1993. Multiple ubiquitin-conjugating enzymes participate in the in vivo degradation of the yeast MAT alpha 2 repressor. Cell 74:357–369
  • Chernoff, Y. O., Derkach, I. L., and Inge-Vechtomov, S. G.. 1993. Multicopy SUP35 gene induces de-novo appearance of psi-like factors in the yeast Saccharomyces cerevisiae. Curr. Genet. 24:268–270
  • Chernoff, Y. O., Lindquist, S. L., Ono, B., Inge-Vechtomov, S. G., and Liebman, S. W.. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884
  • Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K., and Zink, A. D.. 1999. Evidence for a protein mutator in yeast: role of the Hsp70-related chaperone Ssb in formation, stability, and toxicity of the [PSI] prion. Mol. Cell. Biol. 19:8103–8112
  • Colby, G., Wu, M., and Tzagoloff, A.. 1998. MTO1 codes for a mitochondrial protein required for respiration in paromomycin-resistant mutants of Saccharomyces cerevisiae. J. Biol. Chem. 273:27945–27952
  • Conde, J., and Fink, G. R.. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73:3651–3655
  • Cox, B. S., Tuite, M. F., and McLaughlin, C. S.. 1988. The psi factor of yeast: a problem in inheritance. Yeast 4:159–178
  • Czaplinski, K., Ruiz-Echevarria, M. J., Paushkin, S. V., Han, X., Weng, Y., Perlick, H. A., Dietz, H. C., Ter-Avanesyan, M. D., and Peltz, S. W.. 1998. The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes Dev. 12:1665–1677
  • Decoster, E., Vassal, A., and Faye, G.. 1993. MSS1, a nuclear-encoded mitochondrial GTPase involved in the expression of COX1 subunit of cytochrome c oxidase. J. Mol. Biol. 232:79–88
  • Derkatch, I. L., Bradley, M. E., Zhou, P., Chernoff, Y. O., and Liebman, S. W.. 1997. Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae. Genetics 147:507–519
  • Derkatch, I. L., Chernoff, Y. O., Kushnirov, V. V., Inge-Vechtomov, S. G., and Liebman, S. W.. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386
  • Didichenko, S. A., Ter-Avanesyan, M. D., and Smirnov, V. N.. 1991. Ribosome-bound EF-1 alpha-like protein of yeast Saccharomyces cerevisiae. Eur. J. Biochem. 198:705–711
  • Dmochowska, A., Konopinska, A., Krzymowska, M., Szczesniak, B., and Boguta, M.. 1995. The NAM9-1 suppressor mutation in a nuclear gene encoding ribosomal mitochondrial protein of Saccharomyces cerevisiae. Gene 162:81–85
  • Dujardin, G., Pajot, P., Groudinsky, O., and Slonimski, P. P.. 1980. Long range control circuits within mitochondria and between nucleus and mitochondria. I. Methodology and phenomenology of suppressors. Mol. Gen. Genet. 179:469–482
  • Eaglestone, S. S., Cox, B. S., and Tuite, M. F.. 1999. Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J. 18:1974–1981
  • Eaglestone, S. S., Ruddock, L. W., Cox, B. S., and Tuite, M. F.. 2000. Guanidine hydrochloride blocks a critical step in the propagation of the prion-like determinant [PSI(+)] of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 97:240–244
  • Folley, L. S., and Fox, T. D.. 1994. Reduced dosage of genes encoding ribosomal protein S18 suppresses a mitochondrial initiation codon mutation in Saccharomyces cerevisiae. Genetics 137:369–379
  • Fox, T. D.. 1996. Translational control of endogenous and recoded nuclear genes in yeast mitochondria: regulation and membrane targeting. Experientia 52:1130–1135
  • Fünfschilling, U., and Rospert, S.. 1999. Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. Mol. Biol. Cell 10:3289–3299
  • Garcia, P. D., Hansen, W., and Walter, P.. 1991. In vitro protein translocation across microsomal membranes of Saccharomyces cerevisiae. Methods Enzymol. 194:675–682
  • Gargouri, A. F.. 1989. Recherches sur les introns de l'ADN mitochondrial chez la levure Saccharomyces cerevisiae: mutations, suppressions et deletions genomiques d'introns. Institute of Molecular Genetics, Gif-sur-Yvette, France
  • Glick, B. S., and Pon, L. A.. 1995. Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol. 260:213–223
  • Glover, J. R., Kowal, A. S., Schirmer, E. C., Patino, M. M., Liu, J. J., and Lindquist, S.. 1997. Self-seeded fibers formed by Sup35, the protein determinant of [PSI+], a heritable prion-like factor of S. cerevisiae. Cell 89:811–819
  • Graack, H. R., and Wittmann-Liebold, B.. 1998. Mitochondrial ribosomal proteins (MRPs) of yeast. Biochem. J. 329:433–438
  • Green-Willms, N. S., Fox, T. D., and Costanzo, M. C.. 1998. Functional interactions between yeast mitochondrial ribosomes and mRNA 5′ untranslated leaders. Mol. Cell. Biol. 18:1826–1834
  • Grivell, L. A., Artal-Sanz, M., Hakkaart, G., de Jong, L., Nijtmans, L. G., van Oosterum, K., Siep, M., and van der Spek, H.. 1999. Mitochondrial assembly in yeast. FEBS Lett. 452:57–60
  • Haid, A., and Suissa, M.. 1983. Immunochemical identification of membrane proteins after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methods Enzymol. 96:192–205
  • Hänninen, A. L., Simola, M., Saris, N., and Makarow, M.. 1999. The cytoplasmic chaperone hsp104 is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum. Mol. Biol. Cell 10:3623–3632
  • He, S., and Fox, T. D.. 1997. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of N and C termini and dependence on the conserved protein Oxa1p. Mol. Biol. Cell 8:1449–1460
  • Kaiser, C., Michaelis, S., and Mitchel, A.. 1994. Methods in yeast genetics. A Cold Spring Harbor Laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Kruszewska, A., Szczesniak, B., and Claisse, M.. 1980. Recombinational analysis of OXI1 mutants and preliminary analysis of their translation products in S. cerevisiae. Curr. Genet. 2:45–51
  • Kushnirov, V. V.. Ph.D. thesis. Structure and functional organisation of the SUP2 (SUP35) gene controlling translational fidelity in yeast. Cardiology Research Center, Moskow, USSR. 1990
  • Kushnirov, V. V., and Ter-Avanesyan, M. D.. 1998. Structure and replication of yeast prions. Cell 94:13–16
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
  • Lemaire, C., Robineau, S., and Netter, P.. 1998. Molecular and biochemical analysis of Saccharomyces cerevisiae cox1 mutants. Curr. Genet. 34:138–145
  • Liebman, S. W., and Derkatch, I. L.. 1999. The yeast [PSI+] prion: making sense of nonsense. J. Biol. Chem. 274:1181–1184
  • Linder, P., and Slonimski, P. P.. 1989. An essential yeast protein, encoded by duplicated genes TIF1 and TIF2 and homologous to the mammalian translation initiation factor eIF-4A, can suppress a mitochondrial missense mutation. Proc. Natl. Acad. Sci. USA 86:2286–2290
  • Lindquist, S.. 1997. Mad cows meet psi-chotic yeast: the expansion of the prion hypothesis. Cell 89:495–498
  • Lindquist, S., and Kim, G.. 1996. Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA 93:5301–5306
  • Lindquist, S., Patino, M. M., Chernoff, Y. O., Kowal, A. S., Singer, M. A., Liebman, S. W., Lee, K. H., and Blake, T.. 1995. The role of Hsp104 in stress tolerance and [PSI+] propagation in Saccharomyces cerevisiae. Cold Spring Harb. Symp. Quant. Biol. 60:451–460
  • Lund, P. M., and Cox, B. S.. 1981. Reversion analysis of [psi−] mutations in Saccharomyces cerevisiae. Genet. Res. 37:173–182
  • Masurekar, M., Palmer, E., Ono, B. I., Wilhelm, J. M., and Sherman, F.. 1981. Misreading of the ribosomal suppressor SUP46 due to an altered 40 S subunit in yeast. J. Mol. Biol. 147:381–390
  • Mulero, J. J., and Fox, T. D.. 1994. Reduced but accurate translation from a mutant AUA initiation codon in the mitochondrial COX2 mRNA of Saccharomyces cerevisiae. Mol. Gen. Genet. 242:383–390
  • Nakai, T., Yasuhara, T., Fujiki, Y., and Ohashi, A.. 1995. Multiple genes, including a member of the AAA family, are essential for degradation of unassembled subunit 2 of cytochrome c oxidase in yeast mitochondria. Mol. Cell. Biol. 15:4441–4452
  • Newnam, G. P., Wegrzyn, R. D., Lindquist, S. L., and Chernoff, Y. O.. 1999. Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Mol. Cell. Biol. 19:1325–1333
  • Parsell, D. A., Kowal, A. S., Singer, M. A., and Lindquist, S.. 1994. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 372:475–478
  • Patino, M. M., Liu, J. J., Glover, J. R., and Lindquist, S.. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626
  • Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D.. 1996. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15:3127–3134
  • Paushkin, S. V., Kushnirov, V. V., Smirnov, V. N., and Ter-Avanesyan, M. D.. 1997. In vitro propagation of the prion-like state of yeast Sup35 protein. Science 277:381–383
  • Poutre, C. G., and Fox, T. D.. 1987. PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115:637–647
  • Rospert, S., and Schatz, G.. Protein translocation into mitochondria Cell biology, a laboratory handbook Celis, J. E. 2:277–285 Academic Press, San Diego, Calif
  • Sambrook, J., Fritsch, E. F., and Maniatis, T.. Molecular 1998. cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sanchez, Y., Taulien, J., Borkovich, K. A., and Lindquist, S.. 1989. 1992. Hsp104 is required for tolerance to many forms of stress. EMBO J. 11:2357–2364
  • Sanchirico, M. E., Fox, T. D., and Mason, T. L.. 1998. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J. 17:5796–5804
  • Santoso, A., Chien, P., Osherovich, L. Z., and Weisman, J. S.. 2000. Molecular basis of a yeast prion species barrier. Cell 100:277–288
  • Schägger, H., and von Jagow, G.. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166:368–379
  • Schirmer, E. C., Glover, J. R., Singer, M. A., and Lindquist, S.. 1996. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem. Sci. 21:289–296
  • Schirmer, E. C., and Lindquist, S.. 1997. Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc. Natl. Acad. Sci. USA 94:13932–13937
  • Serio, T. R., and Lindquist, S. L.. 1999. [PSI+]: an epigenetic modulator of translation termination efficiency. Annu. Rev. Cell Dev. Biol. 15:661–703
  • Sevarino, K. A., and Poyton, R. O.. 1980. Mitochondrial membrane biogenesis: identification of a precursor to yeast cytochrome c oxidase subunit II, an integral polypeptide. Proc. Natl. Acad. Sci. USA 77:142–146
  • Sherman, F., Fink, G. R., and Hicks, J. B.. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Stansfield, I., Jones, K. M., Kushnirov, V. V., Dagkesamanskaya, A. R., Poznyakovski, A. I., Paushkin, S. V., Nierras, C. R., Cox, B. S., Ter-Avanesyan, M. D., and Tuite, M. F.. 1995. The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae. EMBO J. 14:4365–4373
  • Suissa, M., and Reid, G. A.. 1983. Preparation and use of antibodies against insoluble membrane proteins. Methods Enzymol. 97:305–311
  • Surguchov, A. P., Beretetskaya, Y. V., Fominykch, E. S., Pospelova, E. M., Smirnov, V. N., Ter-Avanesyan, M. D., and Inge-Vechtomov, S. G.. 1980. Recessive suppression in yeast Saccharomyces cerevisiae is mediated by a ribosomal mutation. FEBS Lett. 111:175–178
  • Ter-Avanesyan, M. D., Dagkesamanskaya, A. R., Kushnirov, V. V., and Smirnov, V. N.. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676
  • Ter-Avanesyan, M. D., Kushnirov, V. V., Dagkesamanskaya, A. R., Didichenko, S. A., Chernoff, Y. O., Inge-Vechtomov, S. G., and Smirnov, V. N.. 1993. Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol. Microbiol. 7:683–692
  • Ter-Avanesyan, M. D., Zimmermann, J., Inge-Vechtomov, S. G., Sudarikov, A. B., Smirnov, V. N., and Surguchov, A. P.. 1982. Ribosomal recessive suppressors cause a respiratory deficiency in yeast Saccharomyces cerevisiae. Mol. Gen. Genet. 185:319–323
  • Tikhomirova, V. L., and Inge-Vechtomov, S. G.. 1996. Sensitivity of sup35 and sup45 suppressor mutants in Saccharomyces cerevisiae to the anti-microtubule drug benomyl. Curr. Genet. 30:44–49
  • Tuite, M. F., Mundy, C. R., and Cox, B. S.. 1981. Agents that cause a high frequency of genetic change from [psi+] to [psi−] in Saccharomyces cerevisiae. Genetics 98:691–711
  • Vincent, A., and Liebman, S. W.. 1992. The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein. Genetics 132:375–386
  • Wakem, L. P., and Sherman, F.. 1990. Isolation and characterization of omnipotent suppressors in the yeast Saccharomyces cerevisiae. Genetics 124:515–522
  • Wickner, R. B.. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569
  • Wickner, R. B., Masison, D. C., and Edskes, H. K.. 1995. [PSI] and [URE3] as yeast prions. Yeast 11:1671–1685
  • Wickner, R. B., Taylor, K. L., Edskes, H. K., Maddelein, M. L., Moriyama, H., and Roberts, B. T.. 1999. Prions in Saccharomyces and Podospora spp.: protein-based inheritance. Microbiol. Mol. Biol. Rev. 63:844–861
  • Yaffe, M. P., and Schatz, G.. 1984. Two nuclear mutations that block mitochondrial protein import in yeast. Proc. Natl. Acad. Sci. USA 81:4819–4823
  • Zhou, P., Derkatch, I. L., Uptain, S. M., Patino, M. M., Lindquist, S., and Liebman, S. W.. 1999. The yeast non-Mendelian factor [ETA+] is a variant of [PSI+], a prion-like form of release factor eRF3. EMBO J. 18:1182–1191
  • Zhouravleva, G., Frolova, L., Le Goff, X., Le Guellec, R., Inge-Vechtomov, S., Kisselev, L., and Philippe, M.. 1995. Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3. EMBO J. 14:4065–4072

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.